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SUMMARY
Pregnancy is a risk factor for increased severity of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and other respiratory infections, but themechanisms underlying this risk are poorly understood.
To gain insight into the role of pregnancy in modulating immune responses at baseline and upon SARS-CoV-2
infection, we collected peripheral blood mononuclear cells and plasma from 226 women, including 152 preg-
nant individuals and 74 non-pregnant women. We find that SARS-CoV-2 infection is associated with altered
T cell responses in pregnant women, including a clonal expansion of CD4-expressing CD8+ T cells, diminished
interferon responses, and profound suppression of monocyte function. We also identify shifts in cytokine and
chemokine levels in the sera of pregnant individuals, including a robust increase of interleukin-27, known to
drive T cell exhaustion. Our findings reveal nuanced pregnancy-associated immune responses, which may
contribute to the increased susceptibility of pregnant individuals to viral respiratory infection.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a respiratory infectious

diseasecausedbysevereacute respiratory syndromecoronavirus

2 (SARS-CoV-2).1–3 The COVID-19 global pandemic has resulted

in hundreds of millions of infections, including over 200,000 preg-

nant women in the United States.4 In severe or critical COVID-19,
Cell Reports 43, 114933, Novem
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non-pregnant patients often exhibit aberrant activation of innate

and adaptive immune responses,5,6 leading to a profound func-

tional alteration of immune cells.7,8 For example, aggravated

inflammatory responsesaccompaniedbyamassive increase in in-

flammatory cytokines are one of the key features of COVID-19,

which is also closely correlated with disease severity.9–14 An in-

crease in regulatory T cell (Treg) levels has been observed,15,16
ber 26, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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presumably as a compensatory mechanism to dampen immune

responses. Additionally, an exhausted T cell phenotypewith upre-

gulated inhibitory receptor expression has been reported, particu-

larly in those with severe or critical disease.17

While many studies have characterized immune responses to

COVID-19 that are associated with disease progression in non-

pregnant populations,5,18–21 substantially less is known about im-

mune responses to COVID-19 in pregnancy,22–27 despite the clin-

ical observation that pregnant individuals are at increased risk for

severe COVID-19-associated morbidity and mortality.28 Pregnant

individuals with COVID-19 are significantly more likely than age-

matched non-pregnant individuals to require an intensive care

unit admission, invasiveventilation, andextracorporealmembrane

oxygenation.29–31 COVID-19 has also been associated with preg-

nancy-specific complications, including higher rates of preterm

birth, postpartum hemorrhage, hypertensive disorders of preg-

nancy, and thrombotic events, resulting in increased maternal

morbidity and mortality, as well as neonatal complications.32–34

Furthermore, earlier studies suggested that hyperactivation of

the maternal immune systemmight put fetuses at risk for adverse

neurodevelopmental or metabolic programming.35–37 Therefore,

understanding the characteristics of pregnancy-specific viral im-

mune responses is critical to developing effective treatments for

pregnant individuals and to reducing pregnancy-associated

severe morbidity, mortality, and other complications for

SARS-CoV-2 specifically and, more broadly, for other viruses

that may impact pregnant individuals and their offspring.

Pregnancy poses unique challenges to the maternal immune

system, which is tasked with tolerating the fetus while simulta-

neously protecting pregnant individuals and the developing fetus

from invading pathogens.37–39 Altered cytokine expression has

been reported in pregnant individuals with COVID-19, relative to

uninfectedpregnantwomen.32–34,40 Studies of pregnancy-associ-

ated immune changes in COVID-19, however, have reported var-

ied results.41 For example, while some studies reported altered

T cell activation in SARS-CoV-2-infected pregnant women

compared to non-pregnant individuals,42,43 others indicated com-

parable responses.23,44 In addition, studies have reportedconflict-

ing results regardingaugmentedversusdownregulated functionof

circulating monocytes in pregnant women with SARS-CoV-2

infection.43,45,46 These disparate findings might be attributed to
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heterogeneity and imprecise phenotyping of pregnant women’s

clinical presentations across studies. Some of these studies

lacked sufficient sample size and patient diversity to account for

key clinical factors such as disease severity, interval since infec-

tion, and comorbidities such as obesity, which influence immune

responses. Furthermore, prior research often focused narrowly

on specific immune features rather than comprehensive profiling

of diverse immune cell populations and their responses. Finally,

fewstudieshavecomprehensivelyprofiled thepregnancy-specific

SARS-CoV-2 response, including critical comparator groups such

as pregnant uninfected controls, non-pregnant controls, and non-

pregnant individuals with COVID-19.

To address these critical gaps, we comprehensively assessed

the differences between host immune responses to SARS-

CoV-2 in pregnant women and non-pregnant women, including

the effects of disease severity, phase of illness, and obesity, the

most common pregnancy comorbidity impacting the maternal

host immune response. We also considered fetal sex in our ana-

lyses, which has been demonstrated to influence maternal and

placental immune responses to SARS-CoV-2.24 We collected

peripheral blood mononuclear cells (PBMCs), plasma, and stool

from unvaccinated pregnant individuals with or without first-time

SARS-CoV-2 infection, and non-pregnant women with or without

first-time SARS-CoV-2 infection (Tables S1, S2, and S3) as con-

trols. Using flowcytometry, single-cellmultiomics, ex vivo immune

cell stimulation, and unbiased immune correlative analyses, we

performed comparative analyses aimed at defining pregnancy-

associated immune changes during and following SARS-CoV-2

infection. Our findings highlight mechanisms by which pregnancy

influencesmaternal host immune responsesagainst viral infection.

Our work provides a mechanistic framework that enables a

comprehensive understanding of the impact of SARS-CoV-2

infection in pregnancy on the short- and longer-term immunity of

both mothers and offspring.

RESULTS

Comparative immune cell analyses of non-pregnant
versus pregnant women with COVID-19
To decipher the critical immunological drivers shaping the

host immune responses in pregnant women infected with
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Figure 1. Comparative T cell analyses of pregnant versus non-pregnant patients with COVID-19

(A) A schematic of the analyses performed in this paper: non-pregnant versus pregnant women with or without COVID-19.

(B) CD25+ FOXP3+-expressing CD4+ T cell frequencies in PBMCs.

(C and D) Left panels show CM (CD45RO+ CCR7+) and right panels show EM (CD45RO+ CCR7�) frequencies in CD4+ T cells (CD19� CD3+ CD4+) (C) and CD8+

(CD19� CD3+ CD8+) T cells (D) in PBMCs.

(E and F) Frequencies of CD8+ T cells expressing (E) PD-1 and Tim-3 and (F) IL-2 and TNF-a. Healthy (non-pregnant, n = 19; pregnant, n = 34), severe/critical

COVID-19 (non-pregnant, n = 9; pregnant, n = 15), or convalescent COVID-19 (non-pregnant, n = 18; pregnant, n = 22). Data are shown as the mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001.
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SARS-CoV-2, PBMCs, plasma, and stool samples were collected

from 226 women, including 152 pregnant and 74 non-pregnant

women (Tables S1, S2, and S3). During the height of the

COVID-19 pandemic (April 2020 to January 2021), samples were

prospectively collected from pregnant, unvaccinated women

(see STAR Methods) who had mild, moderate, and severe/critical

COVID-19 (severity determinations were categorized as per NIH

criteria47,48) and from uninfected contemporaneously pregnant

controls (SARS-CoV-2 PCR negative). Samples were collected

during the period of acute illness (within 30 days of positive

SARS-CoV-2 PCR test) and/or during the convalescent period

(>30 days after positive PCR test; see STAR Methods). PBMCs

from non-pregnant women with COVID-19 and from uninfected

non-pregnant controls of similar age groups were analyzed as

additional comparator groups.Weperformed flow cytometry ana-

lyses to profile immune cell composition and intracellular cytokine

expression across 156 PBMC specimens (Figure 1A; Figures S1A

and S1B; Tables S1, S2, and S3).

Uncontrolled inflammatory responses are closely associated

with poorer outcomes in COVID-19.49–54 Tregs are often respon-
sible for restraining excessive immune responses, and previous

work has found that Treg frequencies were increased in severe

COVID-19 patients.55 Tregs also play critical roles in maintaining

maternal-fetal tolerance,56–58 and impairment of such tolerance

leads to adverse pregnancy outcomes.59–61 Thus, we analyzed

FOXP3+ CD25+ Treg frequencies among CD4+ T cells in

PBMCs across six different groups consisting of non-pregnant

and pregnant patients across three subgroups (control, severe,

and convalescent). Consistent with a previous report,55 our

data indicated Treg frequencies were increased in severe/critical

non-pregnant COVID-19 cases and were reduced to baseline,

uninfected levels in the convalescent phase (Figure 1B). In

contrast to these findings in non-pregnant women, in pregnant

women, Treg frequencies did not increase with severe/critical

COVID-19 (Figure 1B), suggesting altered Treg responses

following viral infection.

We next analyzed other immune cell frequencies among

total live cells. Major populations such as T cell, B cell, mono-

cyte, natural killer (NK), and natural killer T (NKT) cell levels

among total live cells were comparable between non-pregnant
Cell Reports 43, 114933, November 26, 2024 3
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and pregnant women regardless of their infection status or

severity (Figure S2A). To investigate pregnancy-associated

changes within a specific cell type, we analyzed cell frequencies

at the subpopulation level. Consistent with the percentage com-

parison among total live cells, we found T cell, B cell, and baso-

phil frequencies were comparable between non-pregnant and

pregnant women with COVID-19 regardless of their disease

severity (Figure S2B). While granulocytes are usually excluded

from the PBMC preparation, earlier reports indicated that low-

density neutrophil and eosinophil levels correlate with the

severity of COVID-19 in non-pregnant individuals.62–64 We also

found that neutrophil frequency within the CD3�CD56�CD66b+

population was significantly decreased in convalescent preg-

nant patients relative to convalescent non-pregnant individuals

(Figure S2B). We found a significant increase in NK cell fre-

quencies in severe/critical COVID-19 in pregnancy, compared

to pregnant controls. In contrast, there were no COVID-19-asso-

ciated changes in NK cell frequencies in the non-pregnant group

(Figure S2B). While NKT cell levels were increased in non-preg-

nant participants during COVID-19 convalescence, their levels

were significantly decreased in the pregnant convalescent group

compared to the severe/critical disease group. An increase in the

gdT cell percentage was previously reported in pregnant control

women,65 and a decrease in gdT cell frequency has been noted

in patients with COVID-19.66 Consistent with prior findings, we

observed that pregnant controls had significantly increased

gdT cell frequencies compared to uninfected non-pregnant

women, and SARS-CoV-2 infection was associated with

reduced gdT cell fractions in both groups (Figure S2C). Unlike

the non-pregnant groups, however, gdT cell levels were not

restored to the basal level in pregnant convalescent women

(Figure S2C). These data indicate that the composition of various

immune cell types is largely comparable between pregnant and

non-pregnant groups.

Pregnancy-dependent changes in T cell function
We next investigated whether pregnancy was associated

with altered T cell activation and function in the setting of

COVID-19. First, we analyzed major T cell subpopulations

defined by CCR7 and CD45RO expression level measured by

flow cytometry. In non-pregnant womenwith COVID-19, the per-

centage of the central memory (CM, CD45RO+, CCR7+) subset

of CD4+ T cells was significantly increased in the severe/critical

and convalescent COVID-19 subjects compared with uninfected

non-pregnant controls (Figure 1C). CM CD8+ T cell levels were

significantly increased in non-pregnant convalescent women

compared with uninfected controls (Figure 1D). Such changes

were not observed in the pregnant group. Pregnant convales-

cent individuals had significantly lower frequencies of CM

CD4+ and CD8+ T cells relative to non-pregnant convalescent

women (Figures 1C and 1D). Effector memory (EM, CD45RO+,

CCR7�) CD8+ T cell percentages were lower in the pregnant

patients with COVID-19 relative to both pregnant uninfected

controls and non-pregnant women with COVID-19 (Figure 1D).

These data indicate that the EM CD8+ T cell response, one

of the most important T cell subsets for antiviral immune re-

sponses,67,68 was likely impaired in pregnant women with

COVID-19. Furthermore, reduced percentages of the CM CD8+
4 Cell Reports 43, 114933, November 26, 2024
T cells in the pregnant convalescent group may indicate that

the maintenance of CM CD8+ T cell function was impaired in

pregnant women following COVID-19.

T cell exhaustion and associated functional impairment

phenotypes have previously been reported in patients with

COVID-196 characterized by the upregulation of inhibitory re-

ceptors, such as programmed cell death protein 1 (PD-1) and

Tim-3.69,70 In addition, upregulation of PD-1 and Tim-3 in periph-

eral leukocytes has also been noted in normal pregnancy and is

thought to be associated with maternal-fetal immune toler-

ance.70 Consistent with these prior findings, PD-1 expression

was increased in CD8+ T cells in the pregnant uninfected control

and pregnant convalescent groups, compared with their non-

pregnant control and convalescent counterparts (Figure 1E).

SARS-CoV-2 infection was associated with increased T cell

exhaustion in pregnant patients with severe/critical COVID-19,

as indicated by significantly increased TIM-3 levels compared

to pregnant uninfected controls (Figure 1E). These data indicate

that CD8+ T cell function may be impaired in the pregnant group.

We further assessed the impact of pregnancy on T cell func-

tion by measuring the production of cytokines upon in vitro stim-

ulation of PBMCs with phorbol 12-myristate 13-acetate (PMA)

and ionomycin. We found that, unlike non-pregnant patients

with COVID-19, interleukin (IL)-2 and tumor necrosis factor-

alpha (TNF-a) production by CD45RO+CD8+ T cells in pregnant

patients with COVID-19 were not increased compared to control

groups (Figure 1F). Severe/critical COVID-19 induced increased

production of IL-2, TNF-a, interferon (IFN)-g, and granzyme B by

CD45RO+CD4+ T cells in the non-pregnant group (Figure S3A).

Such an increase was not observed in pregnant women with

COVID-19. Production of IL-17A, however, was significantly

increased in the setting of severe/critical COVID-19 in pregnant

women only (Figure S3A). We also noted that gdT cells from

pregnant women with COVID-19 produced increased levels of

IFN-g compared to control pregnant women (Figure S3B). These

data suggest that CD8+ T cell function may be impaired in preg-

nant women due to the enhanced expression of co-inhibitory

molecules, which may serve as a contributing factor to predis-

pose pregnant women to increased disease severity in the

setting of COVID-19. Conversely, T helper (Th)17 cell function

seems to be enhanced in the setting of viral infection in preg-

nancy, echoing earlier findings from inflammation-exposed

pregnant rodent work.71–73

To better understand COVID-19 severity within the pregnant

individuals (Tables S1, S2, and S3), we next compared T cell

function within pregnant groups depending on COVID-19

severity. Compared to other groups, EM CD4+ and EM CD8+

T cell frequencies were altered in the moderate and severe/crit-

ical groups, respectively (Figures S4A and S4B). Upon in vitro

stimulation, CD4+ T cells isolated from the moderate group pro-

duced the highest amounts of IFN-g, TNF-a, and granzyme B,

compared to other groups, including the severe/critical group

(Figure S4C). Such moderate group-associated robust cytokine

production was not observed in IL-17A-producing CD4+ cells

(Figure S4D). IFN-g-producing CD8+ T cell level was also highest

in the moderate group (Figure S4E). On the other hand, IFN-g-

and TNF-a-producing gdT cell levels were strongly induced in

the mild, not moderate, COVID-19 group (Figure S4F).
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Taken together, these data indicate that SARS-CoV-2 infec-

tion and pregnancy led to altered immune cell function, which

was more pronounced in CD4+ and CD8+ T cells depending on

disease severity.

Pregnancy-dependent changes in monocyte function
We next assessed whether pregnancy and COVID-19 were asso-

ciated with alterations in monocyte composition and function.

Three major populations of monocytes can be defined by flow

cytometry in blood based on the level of CD14 and CD16 expres-

sion: classical monocytes, CD14+CD16�; intermediate mono-

cytes, CD14+CD16+; and non-classical monocytes, CD14low

CD16+.74,75 Classical monocyte levels were highest in pregnant

convalescent women compared to other groups (Figure 2A).

Levels of intermediatemonocyteswere increased in non-pregnant

individuals with severe/critical COVID-19 relative to uninfected

controls (Figure2A); this increasewasnot observed inpregnant in-

dividuals. Finally, non-classicalmonocyte frequencieswere signif-

icantly higher in pregnant convalescent women compared to non-

pregnant convalescent women (Figure 2A).

We further examined monocyte expression of human leuko-

cyte antigen-DR (HLA-DR), a major histocompatibility complex

(MHC) class II surface receptor that presents antigens to

T cells. Earlier studies of patients with severe COVID-19 identi-

fied reduced HLA-DR expression on monocytes as a marker

for immune suppression andmonocyte exhaustion.7,8,76–78 In in-

termediate and non-classical monocytes, HLA-DR expression

levels were higher at baseline in the pregnant uninfected controls

compared to non-pregnant controls. HLA-DR expression was

significantly reduced in the setting of severe/critical COVID-19

relative to uninfected controls in both pregnant and non-preg-

nant groups (Figure 2B). Intriguingly, in pregnant individuals,

HLA-DR expression was restored during convalescence in clas-

sical monocytes only, while it remained suppressed even in

convalescence in intermediate and non-classical monocytes.

Moreover, HLA-DR expression in both classical and non-clas-

sical monocytes was significantly higher in the pregnant conva-

lescent group relative to non-pregnant convalescent individuals

(Figure 2B). Taken together, these findings suggest that preg-

nant individuals may have heightened antigen-presenting

monocyte capabilities compared to non-pregnant individuals,

with antigen-presenting capacity of monocytes significantly

reduced in the setting of severe or critical COVID-19. The

observed reduction in HLA-DR expression likely reflectedmono-

cyte exhaustion rather than reduced monocyte proliferation, as

staining with the active proliferation marker Ki67 revealed robust

proliferation of classical and non-classical monocytes during the

acute phase of COVID-19 in both non-pregnant and pregnant

patients (Figure 2C). In aggregate, these data indicate that
Figure 2. Pregnancy enhances monocyte function

(A) Representative fluorescence-activated cell sorting (FACS) plots and quantifica

and non-classical monocytes (CD16+) as analyzed by flow cytometry from PBMC

(B) Mean fluorescence intensities (MFIs) of HLA-DR expression in classical, inter

(C) Frequencies of Ki67, a proliferation marker, expressed in classical, intermedi

(D and E) A heatmap presenting monocyte-secreted cytokines upon 1 ng/mL

as quantified by cytometric bead array analyses (E). Healthy (non-pregnant, n = 1

n = 15), or convalescent COVID-19 (non-pregnant, n = 18; pregnant, n = 22). Da
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pregnancy itself alters the relative abundance of certain circu-

lating monocyte subsets, and thus the monocyte exhaustion

associated with severe/critical COVID-19 may have a differential

impact on the antigen-presenting capabilities of pregnant

individuals and therefore their ability to activate specific T cell

responses.

To test monocyte function in pregnant individuals with and

without COVID-19, we enriched monocytes from PBMCs,

followed by ex vivo activation with a low amount of an immune

stimulant, lipopolysaccharide (LPS). For this stimulation assay,

we selected the concentration of LPS that did not trigger robust

cytokine responses in CD14+ monocytes isolated from the non-

pregnant uninfected controls (Figure 2D). Intriguingly, CD14+

monocytes from pregnant uninfected individuals produced

higher mean levels of many cytokines compared to CD14+

monocytes from all non-pregnant groups (Figure 2D). In the

setting of COVID-19, however, particularly in severe/

critical patients, cytokine production by monocytes from preg-

nant individuals was significantly dampened relative to the preg-

nant uninfected baseline and relative to convalescent pregnant

individuals (Figure 2E). For example, IL-1b, IL-6, IFN-l, CC

chemokine ligand 20 (CCL20, MIP3a), and TNF-a levels were

significantly reduced in pregnant patients with severe/critical

COVID-19 relative to uninfected pregnant controls and were

comparable between the pregnant severe/critical COVID-19 pa-

tients and the non-pregnant groups (Figure 2E). In sharp contrast

to non-pregnant individuals, pregnant convalescent patients’

monocytes regained the ability to produce high amounts of

many cytokines (e.g., IL-1b, IL-6, MIP3a, and TNF-a) (Figure 2E).

We then compared monocyte function among pregnant women

with different disease severity. While monocytes from the conva-

lescent group display enhanced MIP3a and IL-6 production

compared to the severe/critical group (Figure S5A), SARS-

CoV-2 infection in pregnancy led to a prolonged suppressive

effect on monocyte function, as shown by significantly reduced

production of IL-12p70, IFN-ɑ, and IFN-g (Figure S5B).

Thus, monocytes from pregnant individuals demonstrated an

enhanced ability to produce cytokines at baseline, which was

robustly suppressed by severe/critical COVID-19 to a greater

extent than monocytes from non-pregnant counterparts. Of

note, monocytes from pregnant individuals recovered their cyto-

kine-producing function in convalescence, while such recovery

was not observed in monocytes from non-pregnant individuals.

Immune responses associated with pregnancy defined
by single-cell RNA sequencing of PBMCs from pregnant
women with COVID-19
To gain an unbiased understanding of the differences in host im-

mune responses between pregnant and non-pregnant patients
tions of classical monocytes (CD14+), intermediate monocytes (CD14+CD16+),

s.

mediate, and alternative monocytes.

ate, and alternative monocytes.

LPS stimulation (D) and representative cytokine levels in the supernatant

9; pregnant, n = 34), severe/critical COVID-19 (non-pregnant, n = 9; pregnant,

ta are shown as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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with COVID-19, we performed single-cell RNA sequencing

(scRNA-seq) with cellular indexing of transcriptomes and

epitope sequencing (CITE-seq) on 26 PBMC samples, including

those from pregnant patients with severe COVID-19, asymptom-

atic COVID-19, or no SARS-CoV-2 infection, as well as age-

and sex-matched controls from non-pregnant female patients

with severe COVID-19, and asymptomatic COVID-19 (see

Table S4). We analyzed a total of 181,112 single cells, which

grouped into the following circulating immune cell lineages: T

(CD4+ and CD8+) and NK cells (95,225 cells), mononuclear

phagocytic (MNP) cells (66,719 cells), and B and plasma cells

(19,168 cells; Figures S6A–S6C). There were no significant

differences in the abundance of these main lineages between

pregnant and non-pregnant patients with COVID-19 or across

COVID-19 severities (Figures S6D and S6E).

We thensub-clustered theCD8+T,CD4+T,B/plasma, andMNP

cells independently to further define immune cell subpopulations

within each lineage with greater granularity (Figures S6F–S6I,

S7A, S8A, S9A, and S9B; Table S5; see STAR Methods). First,

we identified 16 distinct cell subsets within the CD8+ T cell line-

ages, including an NK/NKT cell subset (NK/NKT_1), cycling NK

cell subset (NK_2), naive CD8+ T cells (CD8T_4_naive), two CD8+

T cell subsets expressing cytotoxic genes GZMK and GZMH

(CD8T_1_cytotoxic, CD8T_2_cytotoxic), one CD8+ T cell subset

with gene expression suggestive of metabolic activation

(CD8T_6_met_active), and three CD161-expressing CD8+ T cell

subsets (CD8T_9_Tc17, CD8T_10, mucosal-associated invariant

T cells [MAIT]). We also identified a CD8+ T cell subset with high

expression of CD4 and low expression of CD8A and CD8B

(CD8T_3_cytotoxic_CD4) and a CD8+ T cell subset with a high

expression ofCXCR4 and TGFB1 (CD8T_7) (Figure 3A). The abun-

dance of the cytotoxic population CD8T_2_cytotoxic expressing

PRF1, KLRD1, and GNLY was significantly lower in pregnant

versus non-pregnant subjectswithCOVID-19, aswas the cell sub-

set CD8T_9_Tc17, a CD161-, RORC-, CXCR6-, and GZMK-ex-

pressing CD8+ T cell population suggestive of a Tc17 phenotype.

In contrast, in the context of COVID-19 infection, CD8T_10, a pop-

ulation of CD161/KLRB1-expressing CD8+ T cells with high

CXCR4 and TNFAIP3 expression, is significantly higher in preg-

nant patients;MAIT cells also showeda trendof higher abundance

in pregnant patients (Figures 3B, S6J, and S6K). Of note, doublets

and low-quality cell subsets had been excluded from all analyses

(see STARMethods). Collectively, these shifts in cell subset abun-

dance suggest that pregnant individuals have an altered capacity

tomount specific immune responses in the settingofSARS-CoV-2

infection compared to non-pregnant individuals, and this occurs

across a spectrum of mechanisms, including less robust classic

cytotoxic CD8+ T cell (CD8T_2_cytotoxic) and mitigated Tc17

(CD8T_9_Tc17) responses.27 In parallel, our data demonstrate

that pregnant individuals with COVID-19 may have higher levels

of other specialized KLRB1-expressing CD8+ T cell responses

(CD8T_10, MAIT; Figure 3B), which have been shown to play an

important role in mediating antimicrobial defense while maintain-

ing the immune tolerance state of pregnancy.79

Paired T cell receptor (TCR) repertoire sequencing was also

profiled for each of these specimens, which were then associ-

ated with the single-cell gene expression measurements by

shared cellular barcode; expanded TCR clones were defined
to have a frequency of at least 1%per sample and exist in at least

five single cells. Using these parameters, we identified a total of

341 expanded clones across 10,833 single CD8+ T cells. Overall,

the highest percentage of expanded clones were identified in the

cytotoxic CD8T_2_cytotoxic, the CD40LG-expressing CD8T_3_

cytotoxic, and NK/NKT_1 cell subsets (Figures S10A–S10D).

Within the context of SARS-CoV-2 infection, the frequency of

expanded clones in pregnancy was significantly higher in the

CD8T_3_cytotoxic_CD4 cell subset compared to non-pregnant

individuals, whereas clonal expansion of CD8 T cells occurred

predominantly in CD8T_2_cytotoxic cells in non-pregnant indi-

viduals (Figures 3C, 3D, and S10E–S10G). The pregnancy-asso-

ciated clonal expansion emerging from CD8T_3_cytotoxic_

CD4—a subset of CD8 T cells with a distinctive transcriptional

footprint characterized by low expression of CD8A and CD8B

and relatively high expression of CD4, CD40LG, and CD6

(Figures 3A and S6G)—also demonstrated cytotoxic markers

shared by neighboring cell subsets (GZMH, GNLY, FGFBP2,

PRF1) and concurrent expression of surface protein markers

CD45RO, KLRG1, CD150 (SLAM), and CD57 (Figure 3E). While

CD8T_3_cytotoxic_CD4 expresses cytotoxic markers, some

markers such as GZMB, GZMH, and PRF, express significantly

lower in pregnant patients with COVID compared to non-preg-

nant patients with COVID (Figures S6L and S6M). Lower cytotox-

icity marker expression is also apparent in all CD8 T cells but to a

lesser extent than CD8T_3_cytotoxic_CD4 (Figure S6N). A

similar CD8 T cell type expressing CD4 and CD40LG was sug-

gested to have helper functions.80 While CD4-expressing CD8+

T cells have also been reported to be present in viral infections,

including SARS-CoV-2,81,82 our data highlight the clonal expan-

sion of this specific T cell type in pregnancy.

Using the database VDJdb,83 we queried the identity of puta-

tive cognate epitopes to the TCR clones identified in our dataset

and identified epitopes for 91 different clones from 810 single

cells (Table S6). Clones with specificity to SARS-CoV-2 epitopes

were most abundant in the Tc17-like CD8T_9 cell subset and

MAIT cells (Figures 3F and 3G; Table S7). Interestingly, there is

no enrichment of TCRs that putatively identify SARS-CoV-2 in

CD8T_3_cytotoxic_CD4, the expanded cell subset in pregnant

patients with COVID-19. Given the limited knowledge about

the specific targets associated with various TCR sequences,

the absence of a TCR sequence fromVDJdb does not definitively

preclude its capacity to recognize epitopes of the virus. That

being said, we identified some TCRs with specificity to SARS-

CoV-2 in other cell subsets (Figures 3F and 3G), indicating a dif-

ference in the epitopes that CD8T_3’s TCRs target. While there

were non-SARS-CoV-2-related epitopes identified that could

putatively bind these TCR clones, no enrichment to a specific

non-SARS-CoV-2 epitope was detected when the analysis was

stratified to COVID-19 severity or specific CD8 T cell subsets,

even while accounting for HLA alleles (see STAR Methods,

Table S8). TCR diversity of CD8+ T cell repertoires was not signif-

icantly different between pregnant COVID-19 patients compared

to non-pregnant COVID-19 patients (Figure S10H by Mann-

Whitney test on q = 0, 1, 2 ,3, 4). We did not detect expanded

TCR clones in CD4+ T cells or expanded B cell receptor (BCR)

clones in our single-cell cohort (Figures S7A, S7D–S7F, S8A,

S8D–S8F). Taken together, these data demonstrate differences
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Figure 3. Changes in CD8+ T cell clonal expansion and cell subset abundances in pregnant patients with COVID-19

(A) Uniform manifold approximation and projection (UMAP) embedding of 50,140 CD8+ T and NK cells and their clustering to 13 cell subsets (left). Expression of

main marker genes, scaled mean log (counts per million, CPM) (right).

(B) A boxplot illustrating the abundance of CD8+ T cell subsets out of all CD8+ T and NK cells.

(C) Frequency of TCR clones projected on CD8+ T and NK cell UMAP and split by condition (SEV, severe; ASX, asymptomatic; CTRL, control).

(D) A boxplot illustrating the percentage of expanded clones out of total expanded clones per cell subset in pregnant versus non-pregnant COVID-19 patients.

(E) Gene and protein expression that characterize cell subset CD8T_3_cytotoxic_CD4; hex bin plots with log(CPM).

(F) TCR clones with specificity to SARS-CoV-2 projected onto CD8+ T and NK UMAPs.

(G) Percentage of TCR clones with specificity to SARS-CoV-2 epitopes out of total cells in each cell subset (x axis) and number of cells with SARS-CoV-2

specificity (annotation at the end of the bars). *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4. ISGs are downregulated in pregnant patients with COVID-19

(A) UMAP embedding of 50,140 CD8+ T and NK cells and their clustering to 13 cell subsets.

(B) A boxplot illustrating the expression signature of 91 ISGs across CD8+ T cell subsets in pregnant versus non-pregnant COVID-19 patients.

(C) UMAP embedding of 66,719 mononuclear phagocyte (MNP) cells and their clustering to eight cell subsets.

(D) A boxplot illustrating the expression signature of 91 ISGs across MNP cell subsets in pregnant versus non-pregnant COVID-19 patients.

(legend continued on next page)
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in CD8+ T cell adaptive host immune responses, TCR clonality,

diversity, and potential to bind viral epitopes in COVID-19 infec-

tion during pregnancy.

Impaired ISG expression in pregnant women
Interferon-stimulated gene (ISG) expression is a key immune

response for protective SARS-CoV-2 immunity.84,85 However,

uncontrolled ISG responses may contribute to COVID-19

severity.86,87 We assessed ISG expression across PBMC line-

ages in non-pregnant and pregnant patients with COVID-19,

leveraging our scRNA-seq analyses to investigate how preg-

nancy influences IFN responses. Out of 270 ISGs selected as

described in the STAR Methods, 91 showed a significant

differential expression in at least one cell subset in pregnant

vs. non-pregnant patients with COVID-19. The overall expres-

sion level of these ISGs was lower in pregnant patients with

COVID-19 (Figure 4). We found decreased expression signature

of 91 ISGs (see list in Table S9) in CD8+ T cell subsets CD8T_1, 2,

3, 4, 6, 7, 8, and 9 and NK/NKT_1 cell subsets in pregnant

compared to non-pregnant individuals with COVID-19

(Figures 4A and 4B). Similar results were obtained across

MNP, CD4+, and B cell subsets defined by scRNA-seq

(Figures 4C–4H and S10I). While there was no significant differ-

ence in differential abundance in the eight MNP populations

observed across either COVID-19 severity or pregnancy pertur-

bation states (Figures S9C and S9D), in all MNP cell subsets

(except pDCs)—including four CD14-high and CD16-negative

cell subsets (MNP_1, MNP_2, MNP_3, and MNP_4), two cell

subsets with varying expression of CD16 (MNP_5 and MNP_

6), and cDCs—there was decreased expression of ISGs in

pregnant compared to non-pregnant patients with COVID-19

(Figure 4D). Interestingly, similar results were also identified in

CD4+ T cell subsets (Figure 4F). While there were no significant

differences in cluster abundance across the eight CD4 T cell

subsets defined by scRNA-seq analysis (Figures S7A–S7C),

there was decreased expression of ISGs in all CD4-expressing

populations except CD4T_6 (Figures 4E and 4F). While ISG

expression was not significantly different across B cell subsets

(Figures S8A–S8C, 4H), there was significantly decreased abun-

dance of the IFITM1, IFI44L-expressing B cell subcluster 3

(B_3_naive_ISG) in pregnant compared to non-pregnant patients

with COVID-19 (Figures 4G, 4I, and S8C), consistent with the

theme of diminished ISG-related responses in pregnant individ-

uals across multiple PBMC lineages. We also noted that, unlike

non-pregnant individuals, plasma IFN-a2 protein level was not

increased in pregnant women even after SARS-CoV-2 infection

(Figure S11), further indicating that the IFN response may be

subdued in pregnancy. Reduced ISG responses in pregnant in-

dividuals with SARS-CoV-2 infection suggest a potential mech-

anism underlying pregnant individuals’ increased susceptibility

to severe viral infections.
(E) UMAP embedding of 29,960 CD4+ T cells and their clustering to eight cell su

(F) A boxplot illustrating the expression signature of 91 ISGs across CD4 T cell s

(G) UMAP embedding of 19,168 B and plasma cells and their clustering to nine c

(H) A boxplot illustrating the expression signature of 91 ISGs across B cell subs

(I) A boxplot illustrating the B_3_naive_ISG cell subset abundances in pregnant ver

patients with asymptomatic and severe COVID-19; Preg_COVID includes pregna
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Distinctive gut microbiota species in pregnant women
with COVID-19
Recent data indicate that SARS-CoV-2 infection induces

changes in the gut microbiota88 and these changes may affect

the disease course.89 We performed shotgun metagenomic

sequencing analyses with non-pregnant or pregnant women’s

stool samples collected from SARS-CoV-2-negative and

SARS-CoV-2-infected groups. We did not find differences in

alpha diversity (a measure for species richness and evenness)

(Figure S12A) and beta diversity (a statistic used to quantify the

compositional dissimilarity) of microbial communities from

SARS-CoV-2-infected pregnant women compared to those

from non-pregnant women (Figure S12B). However, by investi-

gating species-level differences, we found that pregnant pa-

tients with COVID-19 have an increased relative abundance of

Roseburia faecis, Eubacterium species CAG 38, and Eubacte-

rium eligens and a decreased abundance of Lactobacillus

rhamnosus and Erysipelatoclostridium ramosum compared to

non-pregnant patients with COVID-19 (Figure S12C). Among

SARS-CoV-2-infected pregnant women with different clinical

severity, we did not observe significant differences in alpha

diversity according to control or case severity categories among

pregnant women (Figure S12D) and beta diversity (Figure S12E).

However, when we compared the bacterial species-level differ-

ences between pregnant patients with COVID-19 to pregnant

controls, we found that Phascolarctobacterium faecium, Para-

bacteroides merdae, Intestinimonas butyriciproducens, Bacter-

oides fragilis, Asaccharobacter celatus, Alistipes putredinis,

and Adlercreutzia equolifaciens were significantly reduced in

pregnant patients with COVID-19 compared to pregnant con-

trols. In parallel, Actinomyces graevenitzii, a species suggested

to contribute to preterm deliveries,90 increased in its abundance

(Figure S12F). These data indicate that pregnancy influences the

relative abundance of certain gut bacterial species, and alter-

ations in gut microbiota are further affected by COVID-19.

Recent studies indicated that the maternal microbiota

community influences the long-lasting health of offspring,91–93

thus warranting future studies of alteredmicrobiota in pregnancy

at baseline and upon viral infection.

Distinct cytokine and chemokine responses in non-
pregnant versus pregnant patients with COVID-19
The unrestrained production of cytokines or chemokines, the

‘‘cytokine storm,’’ is a well-described feature in some cases of

severe COVID-19.10,13,18,94 However, previous studies have

not compared cytokine levels between non-pregnant COVID-

19 and pregnant COVID-19. To gain insight into the differences

in inflammatory response between pregnant and non-pregnant

individuals with COVID-19, we collected plasma samples from

107 individuals, as described in Tables S1, S2, and S3, to assess

the levels of 71 cytokines, chemokines, and growth factors
bsets.

ubsets in pregnant versus non-pregnant COVID-19 patients.

ell subsets.

ets in pregnant versus non-pregnant COVID-19 patients.

sus non-pregnant COVID-19 patients. NonPreg_COVID includes non-pregnant

nt patients with asymptomatic and severe COVID-19. *p < 0.05, ***p < 0.001.
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(Figures 5 and S13). We found that COVID-19 disease

severity47,48 was a key consideration in understanding cytokine

elevation or suppression in the setting of acute disease. More-

over, we identified substantial differences between the pregnant

and non-pregnant cytokine/chemokine and growth factor

response to COVID-19, with several different patterns of cyto-

kine expression. Among those tested, only one cytokine, IL-10,

was altered similarly in pregnant and non-pregnant individuals

with acute COVID-19 infection; IL-10 increased with acute

infection in both groups, consistent with earlier data from non-

pregnant individuals.10,11,14,18 In contrast, several cytokines,

chemokines, and growth factors were altered by COVID-19 in

opposite directions between pregnant and non-pregnant indi-

viduals, including TNF-a, VEGF-A, CCL3, CCL4, CCL22, CCL5,

and PDGF-AA/BB (Figure 5); all of these were increased in acute

COVID-19 in non-pregnant individuals but reduced in pregnant

individuals with mild COVID-19, relative to respective uninfected

control populations. A slight exception was TNF-a, which was

increased in non-pregnant individuals with COVID-19 relative

to uninfected controls and reduced among pregnant with mild

COVID-19 but increased in pregnancy as disease severity

increased. Many cytokines and chemokines were increased by

pregnancy itself (Figures 5 and S16), with significantly increased

levels noted in pregnant uninfected controls relative to non-preg-

nant uninfected (IL-27, CCL3, CCL4, CCL22, CCL5, and PDGF-

AA/BB). Finally, we noted several cytokines were significantly

reduced in pregnant individuals with COVID-19 relative to non-

pregnant individuals with COVID-19, including CCL2, CCL8,

VEGF-A, CCL-3, CCL-4, CCL-22, CCL-5, and PDGF-AA/BB. In

contrast, IL-27 was the only cytokine that was significantly

increased among all pregnant groups (uninfected controls and

COVID-19 acute infections) relative to their non-pregnant coun-

terparts, and significantly suppressed in COVID-19 infection

among pregnant patients, relative to pregnant controls.

Taken together, these results demonstrate the impact of preg-

nancy on baseline levels of immune-related soluble factors, such

as cytokines and chemokines, in blood circulation. Their relative

abundance in non-pregnant and pregnant individuals is further

shaped by viral infection, indicating a complex interplay between

the host immune response associated with pregnancy and

respiratory viral infection that culminated in the altered produc-

tion of cytokines and chemokines in blood circulation.

High body mass index and pregnancy synergistically
alter immune responses
Obesity represents the most common comorbidity during

pregnancy and has been recognized as a risk factor for severe

COVID-19.95 For example, obesity-associated, chronic, low-

grade inflammation and impaired lung function may underlie

enhanced susceptibility to infection.96 Thus, we sought to

examine whether maternal obesity (pre-pregnancy body mass
Figure 5. Comparative analyses of plasma cytokines, chemokines, and

19 patients

Concentrations of cytokines, chemokines, and growth factors in pregnant and non

who had mild (non-pregnant, n = 12; pregnant, n = 21), moderate (non-pregnant, n

COVID-19.

Data are shown as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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index [BMI]R30 kg/m2) was associated with altered immune re-

sponses in pregnant patients with COVID-19 and whether

obesity impacted immune responses to COVID-19 differently in

pregnant versus non-pregnant populations. To do so, we group-

ed non-pregnant and pregnant patients with COVID-19 based on

obesity status. Upon in vitro stimulation, CD4+ and CD8+ T cells

produced higher levels of IL-2, IFN-g, and TNF-a in pregnant in-

dividuals with obesity and COVID-19 compared to non-obese

(BMI < 30 kg/m2) pregnant individuals with COVID-19

(Figures S14A and S14B). COVID-19-associated IL-4 production

by CD4+ and CD8+ T cells was augmented by obesity, albeit not

statistically significantly, in pregnant individuals. Thus, obesity

had a more pronounced impact on enhanced T cell production

of inflammatory cytokines in pregnant individuals with COVID-

19 compared to non-pregnant individuals (Figures S14A and

S14B). Obesity augmented IFN-a plasma levels more signifi-

cantly in pregnant women with COVID-19 compared to non-

pregnant women, although IFN-a levels were significantly higher

in non-pregnant individuals with COVID-19 compared to preg-

nant, regardless of obesity status (Figure S14C). Similar trends

were observed for IL-1a and IL-17A, where obesity was associ-

ated with augmented plasma levels in pregnant women with

COVID-19, although neither finding achieved statistical signifi-

cance (p = 0.07 and p = 0.05, respectively; Figure S14C). Despite

its suggested association with suppressed monocyte function in

pregnancy,97 in our analyses, obesity was not associated with

further depression of cytokine production of the COVID-19-

associated monocytes. These data suggest that obesity may

increase the risk of COVID-19 in pregnant individuals by aug-

menting T cell inflammatory functions and that the profound sup-

pression of monocyte function that occurs in COVID-19 may not

be further augmented by obesity.

Effect of fetal sex on immune responses in pregnant
patients with COVID-19
While fetal sex was recently shown to influence COVID-19-

related immune responses in the placenta,24 it is unknown

whether it also affects maternal immune responses. We first

compared T cell composition and cytokine production based

on fetal sex. Overall frequencies of naive, CM, and EM CD4+

and CD8+ T cells (Figures S15A and S15B) in mothers, and

maternal cytokine production by CD4+ T cells (Figure S15C),

CD8+ (Figure S15D), and gdT cells (Figure S15E), were compara-

ble regardless of fetal sex.Mothers with severe or critical COVID-

19 carrying a male fetus demonstrated reduced levels of plasma

IL-10, IL-1RA, and IL-27 relative to mothers carrying a female

fetus, although none of these reductions achieved statistical sig-

nificance (Figure S15F). Among pregnant individuals withmoder-

ate COVID-19 disease severity carrying a male fetus, we de-

tected reduced production of IFN-l, IFN-b, and IL-6 by CD14+

monocytes upon in vitro LPS stimulation relative to individuals
growth factors of pregnant versus non-pregnant control and COVID-

-pregnant womenwhowere healthy (non-pregnant, n = 17; pregnant, n = 21) or

= 9; pregnant, n = 6), or severe/critical (non-pregnant, n = 10; pregnant, n = 11)
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with moderate COVID-19 carrying a female fetus (Figure S15G),

although only the reduction in IFN-l achieved statistical signifi-

cance. Overall, these findings suggest that fetal sex may subtly

influence maternal immune responses in the setting of SARS-

CoV-2 in pregnancy, and this area is worthy of study in cohorts

with larger numbers of males and females per biological group

and/or a less heterogeneous viral infection phenotype.

DISCUSSION

Studies have suggested that pregnant women are at a higher risk

of experiencing complications and mortality associated with

SARS-CoV-2 infection.98–100 However, the mechanisms under-

lying this increased susceptibility during pregnancy are not well

understood. Furthermore, conflicting findings in earlier studies,

perhaps due to limitations such as small sample sizes, heteroge-

neous timing of sample collection, and/or lack of availability of

appropriate pregnant and non-pregnant controls, posed a

challenge in formulating a comprehensive understanding of the

modulatory effects of pregnancy on immune responses to

SARS-CoV-2 and other infections.

To gain deeper insights into how pregnancy affects host im-

mune responses at baseline and following viral infections, we

characterized samples, such as PBMCs, plasma, and the gutmi-

crobiome (stool), collected from pregnant and age-matched

non-pregnant women during the acute and convalescent phases

of SARS-CoV-2 infection, compared to samples from pregnant

and non-pregnant SARS-CoV-2-negative controls.

Earlier work suggested that the activation of CD4+ and CD8+

T cells appears to be similar between pregnant and non-preg-

nant women.43 In COVID-19 pregnant women, we observed

impaired CD8+ T cell responses characterized by lower percent-

ages of EM cells, reduced cytokine expression, reduced

ISG expression, and altered clonal expansion compared to

COVID-19 non-pregnant women. CD4-expressing CD8+ T cells

in pregnant patients with COVID-19 were found to undergo a

clonal expansion, while there was a clonal expansion of

other cytotoxic CD8+ T cells in non-pregnant patients with

COVID-19. Additionally, CD8+ T cells in infected pregnant

women displayed reduced functionality, less cytokine produc-

tion, and signs of T cell exhaustion. These data suggest that

pregnancy-associated CD8+ T cells may be less equipped to

combat viral infections effectively due to their higher expression

of PD-1 and Tim-3, lower EMcell percentages, and altered clonal

expansion. On the other hand, gdT and Th17 cell functions are

elevated in mild cases of COVID-19 and infected pregnant

groups, respectively, suggesting that different T cell subsets

display altered functional outcomes. Additional studies will

be needed to gain a mechanistic understanding of such

changes. Earlier works also indicated that fetal antigen-specific

CD8+ T cells show increased PD-1 and LAG-3 expression

during secondary pregnancy.101 Additionally, pregnancy in-

duces the differentiation of hypofunctional CD8+ T cells, which

is associated with extensive epigenetic remodeling.102 These

studies with murine models suggest a possible relationship

between T cell exhaustion and parity. Therefore, future studies

are needed to address whether parity affects T cell exhaustion

in humans.
We identified decreased anti-inflammatory Treg percentages

in pregnant patients with severe/critical COVID-19 compared

to non-pregnant patients. Tregs are key mediators for tolero-

genic responses, essential for the implantation and the mainte-

nance of pregnancy.58,103 Thus, less robust Treg responses

may be associated with an increased risk of developing preg-

nancy-associated complications, including pre-eclampsia, pre-

term birth, and stillbirth.

IFN and ISG production is one of the key responses to control

the disease severity of COVID-19. We found that ISG expression

was generally decreased in many cell types of COVID-19 preg-

nant groups, which may explain why pregnant women become

more susceptible to complications associated with SARS-

CoV-2 infection. While an earlier study has reported impaired

IFN responses during pregnancy,104 our work provides exten-

sive analyses showing the dampened IFN responses in preg-

nancy across many cell types. Future functional studies are war-

ranted to understand how pregnancy affects IFN responses and

whether reduced IFN responses affect the enhanced suscepti-

bility of pregnant women to infection and inflammation.

Our scRNA-seq results showed that pregnant PBMCs include

a CD4-expressing CD8+ T cell subset. Expansion of these dou-

ble-positive cells has been observed in human105,106 and also re-

ported to have antiviral capacities.107 The function of these cells

and their impact on antiviral immunity during pregnancy need to

be studied in the future.

Impaired cytokine production by monocytes has been

reported in severe cases of COVID-19.7,108 However, the

specific functional changes in pregnant monocytes compared

to non-pregnant monocytes during COVID-19 have not been

well understood. We found that pregnancy is associated with

enhancedmonocyte function at baseline compared to non-preg-

nant women. Monocytes from pregnant women exhibited

increased HLA-DR expression, cytokine production, and che-

mokine production. This enhanced monocyte activity might

compensate for impaired T cell function associated with preg-

nancy, as monocytes play a crucial role in recruiting leukocytes

to inflammatory sites through the production of chemokines,

such as CCL3, CCL4, and CCL22.109 Our data are consistent

with other reports that monocyte function in pregnancy may be

enhanced relative to the non-pregnant state.110,111 However,

we also noted that SARS-CoV-2 infection led to long-lasting sup-

pressive effects on monocytes that were most pronounced in

pregnant women, demonstrated by reduced HLA-DR expres-

sion in intermediate and non-classical monocytes persisting

into convalescence, dampened cytokine production in severe/

critical disease, and reduced ISG expression in pregnant

compared to non-pregnant individuals with COVID-19. In

addition, given the heightened monocyte function we observed

in uninfected pregnant individuals, the COVID-19-associated

monocyte suppression marks an even more profound difference

from the pregnant baseline state than does monocyte suppres-

sion observed in non-pregnant individuals with COVID-19.7,8

Our data indicated substantial differences between the

pregnant and non-pregnant cytokine/chemokine and growth

factor response to COVID-19. Finally, we also demonstrated

that CD4+ and CD8+ T cells from COVID-19-infected pregnant

individuals with obesity produced increased cytokine levels
Cell Reports 43, 114933, November 26, 2024 13
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upon stimulation compared to non-obese pregnant individ-

uals with COVID-19. Such interaction between obesity and

COVID-19 status was not observed in non-pregnant groups.

The enhanced inflammatory responsemay contribute to a higher

risk of developing inflammatory pathologies in pregnant women

with obesity.

Another important area for future study beyond the scope of

the experiments performed here is to understand how maternal

immune responses during acute SARS-CoV-2 infection and

convalescence relate to longer-term immune function in individ-

uals after pregnancy112–114 (e.g., development of long COVID or

other immune syndromes) and the short- and long-term health

outcomes of their offspring. Members of our study team have

examined both short-term neurodevelopmental115,116 and cardi-

ometabolic117,118 outcomes in offspring of mothers infected

with SARS-CoV-2 in pregnancy, demonstrating increased risk

for neurodevelopmental diagnoses at 12 months (particularly

pronounced in male offspring) and increased risk for altered

growth trajectories in the first year of life that may presage an

increased risk for early-onset cardiometabolic complications.

These follow-up studies did not link maternal immune responses

1:1 with offspring health/immune trajectories, however, and

establishment of prospective cohorts to link maternal immune

activation with the neurodevelopmental and cardiometabolic

risk of individual offspring remains an important area for future

study.

In summary, we report the most comprehensive immune

survey of COVID-19 in pregnancy to date, and we identified

pregnancy-specific alterations in immune responses to SARS-

CoV-2, including altered T cell and monocyte function and cyto-

kine production. Our findings of increased T cell exhaustion and

profound monocyte suppression with infection in pregnancy

relative to uninfected pregnant individuals, a pregnancy-specific

clonal expansion of CD4-expressing CD8+ T cell subsets, and

reduced expression of ISGs by all pregnant immune cell subsets

suggest potential mechanisms by which pregnancy-specific im-

munity predisposes individuals to increased severity of disease

with viral infection. Altogether, this work elucidates key aspects

of pregnancy immunity that are important not only in understand-

ing pregnancy-specific responses to SARS-CoV-2 but with

broad implications for a better understanding of altered immunity

and enhanced susceptibility to viral infection in pregnancy that

can be used to guide targeted screening and therapeutic strate-

gies in future pandemics.

Limitations of the study
There are limitations to our study. First, our COVID-19 pregnant

samples were largely from third-trimester infections because

these samples were collected either upon hospital admission

for symptomatic COVID-19 infection (more likely for patients to

have severe infection requiring hospitalization in the third

trimester of pregnancy compared to first or second) or upon pre-

sentation to labor and delivery for labor or other pregnancy-

related evaluation (universal SARS-CoV-2 status screening

was conducted with SARS-CoV-2 nasopharyngeal PCR from

April 2020 onward). Given hospital restrictions on research-

only study visits at our hospitals and most across the country,

it was not possible to comprehensively sample first- and
14 Cell Reports 43, 114933, November 26, 2024
second-trimester pregnant patients for SARS-CoV-2 infection,

so neither our nor any specimens banked contain a comprehen-

sive sampling of first- and second-trimester SARS-CoV-2

infection. Given that trimester-specific immune signatures have

been described,119,120 how SARS-CoV-2 infection in the first

and second trimesters affects maternal host immune responses

is a question that remains to be answered. Second, we evaluated

non-specific T cell stimulation outcomes with samples collected

from the acute and convalescent phases of COVID-19; we did

not assess SARS-CoV-2-specific T cell responses. Third, we

used LPS, instead of other Toll-like receptor (TLR) ligands, to

interrogate monocyte function in vitro. Fourth, while we found

that specific species of bacteria were altered by pregnancy

and SARS-CoV-2 infection, additional studies are needed

to address whether there is a causal association between bacte-

rial composition, COVID-19 disease severity, pregnancy out-

comes, and subsequent risk for offspring neurodevelopmental

disorders.
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Anti-Human CD4 PE-Cy5 (Clone RPA-T4) BioLegend Cat# 300510; RRID: AB_314078

Anti-Human CD8 PE-Cy5.5 (Clone RPA-T8) Thermo Fisher Scientific Cat# 35-0088-42; RRID: AB_11218701

Anti-human CD19 BUV496 (Clone SJ25C1) BD Cat# 612938; RRID: AB_2870221

Anti-human HLA-DR FITC (Clone T€u36) BioLegend Cat# 361604; RRID: AB_2563165

Anti-human PD-1 BUV615 (Clone EH12.1) BD Cat# 612991; RRID: AB_2870262

Anti-human FOXP3 PE (Clone 206D) BioLegend Cat# 320108; RRID: AB_492986

Anti-human TIM-3 BUV737 (Clone 7D3) BD Cat# 748820; RRID: AB_2873223

Anti-human CD25 BV650 (Clone BC96) BioLegend Cat# 302634; RRID: AB_2563807

Anti-human TCR-gd BUV563 (Clone 11F2) BD Cat# 748534; RRID: AB_2872945

Anti-human IFN-g BV750 (CloneB27) BD Cat# 566357; RRID: AB_2739707

Anti-human TNF-ɑ FITC (CloneMab11) BioLegend Cat# 502906; RRID: AB_315258

Anti-human IL-2 BV605 (Clone JES6-5H4) BioLegend Cat# 503829; RRID:AB_11204084

Anti-human IL-4 BV786 (CloneMP4-25D2) BD Cat# 564113; RRID:AB_2738601

Anti-human Granzyme B BV421 (Clone QA18A28) BioLegend Cat# 396413; RRID: AB_2810602

Anti-human IL-17A PE-Cy7 (Clone eBio64DEC17) Thermo Fisher Scientific Cat# 25-7179-42; RRID: AB_11063994

Anti-human CD56 BV421 (Clone NCAM16.2) BD Cat# 562751; RRID: AB_2732054

Anti-human CD123 BUV805 (Clone 9F5) BD Cat# 742031; RRID: AB_2871327

Anti-human CD14 PE-Cy7 (Clone M5E2) BioLegend Cat# 301814; RRID: AB_389353

Anti-human CD16 BV785 (Clone3G8) BioLegend Cat# 302046; RRID: AB_2563803

Anti-human CD16 BUV805 (Clone3G8) BD Cat# 748850; RRID: AB_2873253

Anti-human CD45RO BUV661 (Clone UCHL1) BD Cat# 749887; RRID: AB_2874127

Anti-human CCR7 CF-594 (Clone 2-L1-A) BD Cat# 566768; RRID: AB_2869857

Anti-human CD38 BV750 (Clone HIT2) BD Cat# 746909; RRID: AB_2871703

Anti-human CD66b PerCP-Cy5.5 (Clone G10F5) BioLegend Cat# 305108; RRID: AB_2077855

Human BD Fc BlockTM (Clone Fc1) BD Cat# 564219; RRID: AB_2728082

TotalSeq antibodies for CITE-seq BioLegend See Table S11

Biological samples

PBMCs from healthy non-pregnant, non-pregnant

COVID-19, non-pregnant convalescent,

healthy pregnant, pregnant COVID-19

and pregnant convalescent

This study N/A

Plasma from healthy non-pregnant,

non-pregnant COVID-19, healthy

pregnant, pregnant COVID-19

This study N/A

Stool specimen from, non-pregnant

COVID-19, healthy pregnant,

pregnant COVID-19

This study N/A

Chemicals, peptides, and recombinant proteins

eBioscienceTM Cell Stimulation Cocktail

(plus protein transport inhibitors)

Thermo Fisher Scientific 00-4975-03

FBS Hyclone Cat# SH30910.03

2- mercaptoethanol Thermo Fisher Scientific 21985023

LPS Millopore-Sigma L2630-10MG

Glycophorin A-based antibody kit Stemcell Technologies 01738
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TruStain FcX blocker BioLegend 422302

MojoSort CD45 Nanobeads BioLegend 480030

Hashtag antibodies BioLegend Table S11

Annexin-V-conjugated bead kit Stemcell Technologies 17899

Heat-inactivated human AB serum Millopore-Sigma H3667-20ML

Critical commercial assays

Human Cytokine/Chemokine 71-Plex

Discovery Assay (HD71)

Eve Technologies HD71

LEGENDplexTM Human Cytokine

Panel 2 (13-plex)

BioLegend Cat# 740102

LEGENDplexTM Human Anti-Virus

Response Panel (13-plex)

BioLegend Cat# 740390

LEGENDplexTM Human Cytokine

Panel 2 (13-plex)

BioLegend Cat# 740985

CD14 MicroBeads, human Miltenyi Biotec –

Chromium Single Cell 50 kit V2 NextGEM 10X Genomics PN-1000263

50 Feature Barcode library kit 10X Genomics PN-1000256

Chromium Single Cell V(D)J Enrichment kit 10 Genomics PN-1000252,

PN-1000253

AllPrep PowerFecal DNA/RNA 96 Kit Qiagen 80254

Nextera XT DNA library preparation kit Illumina FC-131-1024

LIVE/DEAD Fixable Aqua Dead Cell stain kit Thermo Fisher Scientific Cat# L34966

FoxP3 transcription factor staining kit Thermo Fisher Scientific Cat# 00-5523-00

Deposited data

scRNA data, CITE-seq, and repertoire data This study GEO: GSE239452

Code used for single-cell analysis

and figures generation

This study https://github.com/villani-lab/COVID_pregnancy

Software and algorithms

Flowjo 10 BD https://www.flowjo.com

Prism 9 Graphpad https://www.graphpad.com

CellRanger v6.0.1 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/what-is-cell-ranger

Terra platform – https://app.terra.bio/

Souporcell121 v2.0 (python) Heaton, H et al.121 https://github.com/wheaton5/souporcell

Pegasus v1.7.1 (python) – https://github.com/lilab-bcb/pegasus/tree/master

scanpy V1.9.3 (python) F. Alexander Wolf et al.121 https://github.com/scverse/scanpy

Full python package list with versions See Table S12 –

Limma package v3.54.2 (R) Ritchie, M.E et al.122 https://bioconductor.org/packages/release/

bioc/html/limma.html

ArcasHLA v0.5.0 (R) Orenbuch, R et al.122 https://github.com/RabadanLab/arcasHLA

Alakazam v1.2.1 (R) Gupta, N.T et al.123 https://github.com/cran/alakazam

bioBakery 3 shotgun metagenome

workflow 3.0.0

– https://github.com/biobakery/biobakery_workflows

KneadData 0.10.0 – https://pypi.org/project/kneaddata/

MetaPhlAn 3.0.0 – https://huttenhower.sph.harvard.edu/metaphlan3/
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Human participants and data collection
Pregnant women receiving care at Massachusetts General Hospital and Brigham andWomen’s Hospital in Boston, MA, and enrolled

in a COVID-19 pregnancy biorepository between April 2020 and January 2021, prior to the widespread availability of COVID-19
22 Cell Reports 43, 114933, November 26, 2024

https://github.com/villani-lab/COVID_pregnancy
https://www.flowjo.com
https://www.graphpad.com
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://app.terra.bio/
https://github.com/wheaton5/souporcell
https://github.com/lilab-bcb/pegasus/tree/master
https://github.com/scverse/scanpy
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://github.com/RabadanLab/arcasHLA
https://github.com/cran/alakazam
https://github.com/biobakery/biobakery_workflows
https://pypi.org/project/kneaddata/
https://huttenhower.sph.harvard.edu/metaphlan3/


Resource
ll

OPEN ACCESS
vaccines, were included in this study (MGB IRB#2020P003538 and #2020P000804). Pregnant women were eligible for inclusion if

they were 18 years of age or older, able to provide informed consent for themselves or with a healthcare proxy, and diagnosed

with, or at risk for SARS-CoV-2 virus infection. All participants were tested for the presence of SARS-CoV-2 by RT-PCR of

nasopharyngeal swabs on admission to Labor and Delivery per hospital infection control policy. Patients were also tested if

they had symptoms of COVID-19, even if they had not been admitted to Labor and Delivery. Contemporaneous uninfected pregnant

individuals (again status confirmed by SARS-CoV-2 RT-PCR of nasopharyngeal swab) were also enrolled at delivery. Individuals with

autoimmune disease/use of immune-modulating medications, and those with other infections, such as clinical chorioamnionitis, or

other symptoms of viral or bacterial infection were also excluded.

Non-pregnant women hospitalized with confirmed SARS-CoV-2 infection and enrolled contemporaneously as part of a general

adult cohort described previously124 (MGB IRB #2020P000804) were used as an additional comparator group. Banked PBMC

and plasma samples from healthy, non-pregnant, control women collected prior to the COVID-19 pandemic were used as an

additional biological comparator group. These participants were known to be negative for HIV, TB, EBV, Hepatitis B and C, and

Dengue virus, with normal complete blood counts and not on any immune-modulating medications; their samples were collected

as part of a protocol (MGB IRB # 2010P002121) to bank healthy control samples for use as biological comparators in infectious

disease studies.

Clinical and sample definitions
Clinical and demographic information were abstracted from the electronic medical record. COVID-19 symptom severity was

determined based on NIH criteria.47,48 Samples not designated ‘‘convalescent’’ were collected from pregnant participants in closest

proximity to acute COVID-19 illness and within 30 days of a positive SARS-CoV-2 test. Samples from uninfected pregnant

participants, and from convalescent individuals who tested positive for SARS-CoV-2 infection during pregnancy but remote

(>30 days) from delivery sample collection, were collected during the delivery hospitalization on admission to Labor and Delivery.

Details on sample collection procedures have been described previously.125

METHOD DETAILS

Blood specimen processing
Blood samples were obtained by venipuncture into EDTA tubes. Blood was centrifuged at 1000 3 g for 10 min, and plasma was

aliquoted and stored at �80�C. PBMCs were collected using a Ficoll density gradient.126 Briefly, blood was transferred to a

50 mL conical tube and diluted 1:1 with Hanks’ balanced salt solution (HBSS) without calcium or magnesium. Diluted blood

was layered on top of Ficoll in a 2:1 ratio. The conical tube was then centrifuged at 1000 3 g for 30 min at room temperature

without braking. The interphase was collected and placed in a new 15 mL conical tube with HBSS to bring the volume to 15 mL

and centrifuged at 330 3 g for 10 min with high brake. The supernatant was removed and the cell pellet washed with HBSS. Cells

were frozen in freezing medium with RPMI 1640 medium with 1% penicillin-streptomycin, L-glutamine, 1% sodium pyruvate, 1%

non-essential amino acids, 20% FBS, and 10% DMSO at 5–10 million cells/cryovial, placed in a chilled Mr. Frosty, stored

at �80�C for one day, then transferred to liquid nitrogen for long-term storage.

Flow cytometry-based immune cell profiling
PBMCs were plated at 13 106 cells per well in a 96-well U-bottom plate. PBMCs were stimulated with eBioscience Cell Stimulation

Cocktail (plus protein transport inhibitors) (Thermo Fisher Scientific) in RPMI (RPMI-1640 supplemented with 10% fetal bovine serum

(FBS), 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/mL streptomycin, 1 mM sodium pyruvate, and 50 mM 2-mercaptoethanol)

for 5 h to monitor cytokine expression. After stimulation, cells were stained with antibodies against cell-surface markers and the

LIVE/DEAD fixable dye Aqua (Thermo Fisher Scientific) to exclude dead cells, fixed and permeabilized with a FoxP3 transcription

factor staining kit (Thermo Fisher Scientific), and subsequently stained with cytokine- and/or transcription factor-specific antibodies.

All flow cytometry analyses were performed on a Symphony flow cytometer (BD), and data were analyzed with FlowJo software (BD).

The specific markers used to identify each subset of cells are summarized in the gating strategy (Figure S1). Antibodies that were

used for flow cytometry are listed in the STAR Methods Antibodies Table.

Monocyte enrichment and stimulation
PBMC numbers were counted, and 2 x 106 of PBMCs were used to enrich for CD14+ monocytes with MACS microbeads system

(Miltenyi Biotec) according to the manufacture’s protocol. 1 x 105 cells of MACS-sorted CD14+ monocytes were stimulated with

1 ng/mL LPS in 200 mL of 10%FBS RPMI-1640 media for 8 h. After stimulation, cells were centrifuged, and supernatants were

kept at �80�C for the downstream analysis.

Cytometric bead array
Cytokine and chemokine concentrations were measured from the supernatants of CD14+ monocytes by cytometric bead array

according to the manufacturer’s protocol (BioLegend).
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Plasma cytokine and chemokine analysis
Plasma samples were collected from 38 pregnant patients with acute COVID-19, 31 non-pregnant with acute COVID-19, 21

SARS-CoV-2 negative uninfected pregnant controls, and 17 uninfected non-pregnant controls. Plasma samples were shipped to

Eve Technologies (Calgary, Alberta, Canada) on dry ice, and levels of cytokine, chemokine, and growth factor were measured

with Human Cytokine/Chemokine 71-Plex Discovery Assay (HD71). Serum levels of IL-1RA were validated by an IL-1RA Human

ELISA Kit (Invitrogen).

Single-cell cohort details
Samples from pregnant participants collected as part of a healthcare-system-wide COVID pregnancy biorepository described

previously125,127 were selected for single-cell sequencing to span a range of disease severity as follows: 3 samples from healthy

uninfected pregnant ‘‘control’’ participants at term (39–40 weeks), 3 samples from asymptomatic pregnant SARS-CoV-2 positive

individuals who tested positive at universal screening upon hospital admission (34, 39 and 40 weeks), and 3 samples from pregnant

individuals PCR positive for SARS-CoV-2 with severe or critical COVID-19 as defined by NIH criteria48 (2 critically-ill at 34 and

41 week, 1 severe at 36 weeks). All included samples were collected prior to the initiation of any treatment.

The non-pregnant participants were selected from an MGH COVID-19 patient cohort described previously.64 Out of this large

cohort we chose the ‘‘non-pregnant severe’’ sample group by the following criteria: samples of female patients, 20–34 years old,

PCR positive for SARS-CoV-2 with severe or critical COVID-19 by NIH criteria,48 The ‘‘non-pregnant asymptomatic’’ sample group

was selected by the following criteria: samples of female patients, 20–34 years old, PCR positive for SARS-CoV-2, without symptoms

(none of these patients were admitted to the hospital within a 28 day window, all survived). All included samples were from day

0 before any treatment started. Further meta-data is available in Table S3.

PBMC CD45+ enrichment, cell hashing, CITE-seq staining
Cryopreserved PBMC samples (total of nine samples from the MGH pregnancy cohort and 17 samples from the MGH COVID-19

acute cohort) were thawed at 37�C, diluted with a 10x volume of RPMI with 10% heat-inactivated human AB serum (Sigma Aldrich),

and centrifuged at 3003 g for 7 min. Cells were resuspended in CITE-seq buffer (RPMI with 2.5% [v/v] human AB serum and 2 mM

EDTA) and added to 96-well plates. Dead cells were removedwith an Annexin-V-conjugated bead kit (Stemcell Technologies, 17899)

and red blood cells were removedwith a glycophorin A-based antibody kit (Stemcell Technologies, 01738); modifications weremade

to the manufacturer’s protocols for each to accommodate a sample volume of 150 mL. Cells were quantified with an automated cell

counter (Bio-Rad, TC20), after which, 2.5 x 105 cells were resuspended in CITE-seq buffer containing TruStain FcX blocker

(BioLegend, 422302) andMojoSort CD45 Nanobeads (BioLegend, 480030). Hashtag antibodies (BioLegend) were added to samples

(Table S11) followed by a 30min incubation on ice. Cells were then washed three times with CITE-seq buffer using a magnet to retain

CD45+ cells. Live cells were counted with trypan blue, and samples from each cohort bearing different hashtag antibodies were

pooled together at equal concentrations.

For the pregnancy cohort, three pools of three samples across COVID-19 severity (severe COVID-19, asymptomatic SARS-CoV-2

infection, and no-SARS-CoV2 infection) were pooled (three pools) and loaded on three channels (total of nine channels), and the

data from each donor and each channel was concatenated for computational analysis. For the MGH acute cohort, samples were

pooled in groups of eight and loaded on two channels; individual donors selected as controls from the acute cohort were age-

and gender-matched to the participants in the pregnancy cohort. Pooled samples were filtered with 40 mM strainers, centrifuged,

and resuspended in CITE-seq buffer with TotalSeq-C antibody cocktail (BioLegend; Table S11). Cells were incubated on ice for

30min, followed by three washes with CITE-seq buffer and a final wash in the same buffer without EDTA (RPMI with 2.5% [v/v] human

AB serum). Cells were resuspended in this buffer without EDTA, filtered a second time, and counted.

Single-cell gene expression, feature bar code, and TCR/BCR library construction and sequencing
An input of 50,000 hashed PBMC samples was loaded on a single channel in the 10X Chromium instrument for blood immune cell

analysis, aiming for a recovery goal of 25,000 single cells. Hashed PBMC single-cell libraries were generated with the Chromium

Single Cell 50 kit (V2 NextGEM 10X Genomics, PN-1000263) together with the 50 Feature Barcode library kit (10X Genomics

PN-1000256). PCR-amplified cDNA was used for TCR and BCR enrichment with the Chromium Single Cell V(D)J Enrichment kit

(10 Genomics PN-1000252 and PN-1000253). The library quality was assessed with an Agilent 2100 Bioanalyzer. All gene expres-

sion, feature barcode, TCR andBCR libraries were sequenced on an Illumina NovaSeq using the S4 300 cycles flowwith the following

sequencing parameters: read 1 = 26; read 2 = 90; index 1 = 10; index 2 = 10. Measurements from the threemodalities weremeasured

in the same cells and could be associated using the cell barcode.

scRNA-seq read alignment and quantification
RNA data

Raw sequencing data was pre-processed with CellRanger (v6.0.1, 10x Genomics) to demultiplex FASTQ reads, align reads to the

human reference genome (GRCh38), and count unique molecular identifiers (UMI) to produce a cell x gene count matrix.128 We

used the Terra platform (https://app.terra.bio/) to run Cell Ranger via the workflow script that is part of a collection called Cumulus.129

All samples were genetically demultiplexed using Souporcell130 (v2.0). Hashtag oligos (HTOs) were demultiplexed by Pegasus
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(v1.7.1, python) functions estimate_background_probs and demultiplex. Souporcells’ assignments were mapped to the demulti-

plexed HTOs of patients to identify the Souporcell assignment of the genetically demultiplexed samples. We used the results

from the genetic demultiplexing because they resulted in fewer ‘‘doublet’’ and ‘‘unknown’’ assignments.

All count matrices were then aggregated with Pegasus using the aggregate_matrices function. Low-quality droplets were filtered

out of the matrix prior to proceeding with downstream analyses using the percent of mitochondrial UMIs and number of unique

genes detected as filters (<20%mitochondrial content, >300 unique genes). The percent of mitochondrial UMI was computed using

13 mitochondrial genes (MT-ND6, MT-CO2, MT-CYB, MT-ND2, MT-ND5, MT-CO1, MT-ND3, MT-ND4, MT-ND1, MT-ATP6,

MT-CO3, MT-ND4L, MT-ATP8) using the qc_metrics function in Pegasus. The counts for each remaining cell in the matrix were

then log-normalized by computing the log1p (counts per 100,000), which we refer to in the text and figures as log(CPM).

Protein data

Antibody-derived tags (ADT) data was demultiplexed by matching cell barcodes of the protein data to that of the RNA data cell barc-

odes. Only cells that had RNA data were paired with the protein data, we did not include cells that had only protein data without a

matching RNAdata. Protein data demultiplexing was therefore projected from theRNA-based demultiplexing. All protein valueswere

CLR131 (centered log ratio) transformed by the following formula where x denotes an ADT vector of a single cell c and Gc is the gene

expression of all genes for cell c:

sðxcÞ = Sg˛Gc logðgjg > 0Þ

CLRðxcÞ = log
�
x
�
esðxÞ=lenðxÞ�
Basic and lineage-level single-cell clustering
All cells from all samples after the above-mentioned filtering were used for clustering. We identified candidates for highly

variable genes as those that are expressed in at least 5% of the cells. Then, 2,000 highly variable genes (HVGs) were selected

using the highly_variable_features function in Pegasus and used as input for principal component analysis. TCR and BCR genes

were pre-excluded from the candidate HVGs. To account for batch effects, the resulting principal component scores were aligned

using the Harmony algorithm.132 The resulting principal components were used as input for Leiden clustering and Uniform Manifold

Approximation and Projection (UMAP) algorithm. We identified main lineages using marker genes: T/NK cells (CD3E, CD3D, CD8A,

CD8B, CD4, NCAM1, FCGR3A), B and plasma cells (MS4A1, CD19, JCHAIN) and MNPs (VCAN, LYZ, CD136, MARCO, CD14,

HLA-DRB1, HLA-DRA). To further split CD4 T cells from CD8 T cells, we had to further split the T/NK subset by CD4, CD8, CD3E,

CD3D, and NCAM1 (Figures S6H and S6I). In the resulting embedding and clustering (Figure S6H) clusters 4, 5, 7, 13, 16, and 17

were accounted as CD4 T cells and were re-sub-clustered (Figure 4E); clusters 1, 2, 3, 9, 10, 11, 12, 14, 15, 18 were accounted

as CD8+ T cells (Figure S6H) and were re-sub-clustered (Figure 3A); and clusters 6 and 8 were accounted as NK cells (Figure S6H).

Of note, some NK cells were found in the CD8 T cell lineage and were annotated as such. For every lineage separately we re-ran

the clustering procedure: identified 1,000 HVGs, ran PCA, computed a UMAP embedding based on 50 PCs, and clustered using

the Leiden algorithm.

Single-cell subset annotation
To annotate cell subsets at the lineage-level clustering, we used two complementary methods to identify marker genes and proteins:

‘‘one versus all’’ (OVA) in which we test which genes are differentially expressed between each cluster and the rest of the cells that do

not belong to it; and ‘‘all versus all’’ (AVA) in which we test which genes are differentially expressed between every pair of clusters. For

OVA, we calculated the area under the receiver operating characteristic (AUROC) curve for the log(CPM) values of each gene as a

predictor of cluster membership using the de_analysis function in Pegasus. Genes with an AUROC R0.75 were considered as

marker genes for a particular cell subset. In addition, we computed a pseudo-bulk count matrix by counting UMIs for every patient

in every cluster. We then tested for differential gene expression between clusters using the Limma package (v3.54.2, R)121 and

modeling gene � is_clust using the lmFit() function, where is_clust is a factor with levels indicating if the sample was or was not in

the subset being tested. For AVA, we used the pseudo-bulk matrix to model the gene expression in each cluster separately gene

� clust using the lmFit() function, where clust denotes the cluster, we then contrasted every cluster with every other cluster in this

model using Limma’s contrasts.fit() function. The pseudo-bulk and AUROC statistics of OVA differentially expressed genes

(DEGs) for all cell subsets can be found in Table S10.

Marker genes for each cell subset were interrogated and investigated for several different cluster resolutions using Cell Guide.133

For each lineage, we identified the final resolution in which every cluster has a unique set of marker genes differentiating it from the

rest of the clusters. Table S4 details the main gene and protein markers that were used to annotate every cell subset. If two cell clus-

ters were indistinguishable, they were merged to create one cell subset to obtain the best possible resolution. The numbering of cell

subsets in every lineage was finalized to be sorted by the cell subset size. The resolutions used for the final lineage clustering were as

follows: T/NK cells resolution = 1.8, CD4 T cells resolution = 1, MNPs resolution = 1, B/Plasma cells resolution = 1.3. We annotated

doublets and low-quality cell subsets as such in every lineage they were identified. Low quality cell subsets include subsets with

high-mitochondrial content or high ribosomal content that might be indicative of dying cells. We did not remove them from the
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anndata objects or the UMAP embeddings to allow different interpretations by others who may use this data in the future. We did

exclude low-quality cell subsets from all downstream analysis in this manuscript such as differential abundance, differential gene

expression or enrichment of expanded clones.

Single-cell differential abundance analysis
To test differential abundances in different cell subsets across conditions, we computed the abundance of each cell subset in

every patient and tested differential abundance by Mann-Whitney U test across desired conditions. We then corrected for multiple

hypotheses using Benjamini-Hochberg FDR for every lineage separately. We compared the different conditions we have in our

single-cell cohort in two main levels: the first is comparing the finest resolution we have - pregnant-control/pregnant-asymptom-

atic/pregnant-severe/non-pregnant-asymptomatic/non-pregnant-severe. Since the sample size of these groups is limited, the

majority of the comparisons came up as insignificant (Figures S6E,S6K, S7C, S8B, S9D, and S10G). We, therefore, then tested

differential abundance at a lower resolution by grouping all pregnant COVID-19 patient samples (pregnant-asymptomatic and

pregnant-severe) and compared them to all non-pregnant COVID-19 patient samples (non-pregnant-asymptomatic and non-preg-

nant-severe) in which some cell subsets showed differential abundance (Figures 3B, 4I, S7B, S8C and S10F). We excluded doublets

and low-quality cell subsets for the differential abundance analysis.

Repertoire analysis
Clone definitions, frequency of clones

A clone was defined by concatenating the following sequences that are the output of CellRanger for T cells: TRA_cdr3, TRB_cdr3,

TRA_v_gene, TRB_v_gene, TRA_j_gene, TRB_j_gene; and for B cells: IGL_cdr3, IGK_cdr3, IGH_cdr3, IGL_v_gene, IGK_v_gene,

IGH_v_gene, IGL_j_gene, IGK_j_gene, IGH_j_gene. Any cell that lacked any one of the above components was defined as having

no clone information.

Clone frequency is defined as the ratio between the number of single cells with the exact same clone sequence for a patient and the

total number of cells with TCR/BCR information for that patient (cells that have TCR/BCR information are illustrated in, Figures S7D,

S8D, and S10A).

An expanded clone is defined as a clone with a frequency of at least 1% out of a sample and that appears in at least 5 single cells in

that sample.

Enrichment of TCR/BCR clones in cell subsets
To identify enrichment of expanded clones in cell subsets in different conditions, we defined the frequency of expanded clones per

cell subset per patient by

freqS;c =
nc;S

NS

Where nc;S is the total number of cells that are part of an expanded clone in sample S in cluster c

NS is the total number of cells that are part of an expanded clone in sample S

We then compared freqS;c across different conditions and usedMann-Whitney U test andBenjamini-Hochbergmultiple hypothesis

correction to test if they differ significantly (Figures 3D, S10F, and S10G; ). We excluded doublets and low-quality cell subsets from

this analysis.

Putative epitopes for CD8 TCRs
Wedownloaded the VDJdb83 database in February 2023 and queried it to identify putative epitopes for the CD8 TCRs identified in our

data using an R script.

HLA alleles
In an attempt tomake the putative epitopes found by VDJdbmore specific (in the first query of VDJdb several epitopes were found for

most TCRs), we sought to identify HLA alleles per patient and rerun the VDJdb query. To identify HLA alleles, we used the functions

extract() and genotype() from the repo ArcasHLA122 (v0.5.0, R).

TCR sequence diversity
Diversity curves that measured Hill’s diversity metric across diversity orders 0–4 were created using the package alakazam123

(v1.2.1, R) with the alphaDiversity function. Hill’s diversity metric was only calculated on samples with R200 total TCR sequences.

We tested the differences between the diversity index in q = [0,1,2,3,4] by a Mann-Whitney test.

ISG expression analysis
We compiled an initial ISG list by incorporating the Molecular Signature Database (MSigDB)134 Interferon Alpha Response gene set,

MSigDB Interferon Gamma Response gene set, and gene sets that were previously shown to take part in inflammatory and auto-im-

mune responses in humans.135–137 This initial list consists of 270 genes. We tested for differential gene expression between pregnant
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patients with COVID-19 and non-pregnant patients with COVID-19 by testing the difference in expression per gene per cell subset

using Mann-Witney test and Benjamini-Hochberg multiple hypothesis testing across all ISGs for every cell subset (Table S5). We

then identified significant gene-(cell subset) pairs as those with an absolute absolute(log10(fold-change)) > 0.2 (absolute

(fold-change) > �1.58) and adjusted p-value<0.05. We filtered out genes that had no cell subset in which they are differentially

expressed between pregnant and non-pregnant patients with COVID-19. We were left with 91 ISGs that showed significant

differences in at least 1 cell subset. Log10(fold-change) of this differential expression analysis was truncated at 1 and -1: any values

greater than 1 were converted to 1 and any values lower than (�1) were converted to (�1) (Figure S10I). We excluded doublets and

low-quality cell subsets from this analysis.

Metagenomic analysis
Fresh stool samples were collected and refrigerated at 4�C until aliquoting and freezing at �80�C, typically within 4 h of collection.

Nucleic acids were extracted from stool samples using the AllPrep PowerFecal DNA/RNA 96 Kit (Qiagen) and metagenomes were

sequenced at the Broad Institute, according to their standard established platforms. Briefly, DNAwas prepared for sequencing using

the Illumina Nextera XT DNA library preparation kit and sequenced with a target of 3GB output at 2 3 150 bp read length using the

NovaSeq platform (Illumina). Taxonomic profiles were generated using the bioBakery 3 shotgun metagenome workflow 3.0.0, which

has previously been described.138 Human reads were filtered using KneadData 0.10.0 and taxonomic profiles were generated using

MetaPhlAn 3.0.0.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with PRISM 9. Each data point denotes individual human subjects or animals. For Figures 1, 2, 3,

S2–S5, S11, S14 and S15 statistical significance was calculated by Mann-Whitney non-parametric test for comparisons between

the non-pregnant and pregnant groups in the same disease severity, and Kruskal-Wallis non-parametric test for comparisons

within the non-pregnant or pregnant group. p-values were shown after multiple hypotheses correction by Dunn’s. For the boxplots

in Figures 3, 4, and S6–S10, each dot represents a patient, the box limits represent the 25th and 75th percentiles of the data

distribution (inter-quartile range, IQR), the line in the middle of the box represents the median and the whiskers represent data points

up to 1.5*IQR. Dots beyond the whiskers are considered outliers and are marked by a diamond. Statistical testing - Mann-Whitney

U test; p-values were shown after multiple hypotheses correction by Benjamini-Hochberg; (ns) denotes not significant after multiple

hypotheses correction.
Cell Reports 43, 114933, November 26, 2024 27


	SARS-CoV-2 infection elucidates features of pregnancy-specific immunity
	Introduction
	Results
	Comparative immune cell analyses of non-pregnant versus pregnant women with COVID-19
	Pregnancy-dependent changes in T cell function
	Pregnancy-dependent changes in monocyte function
	Immune responses associated with pregnancy defined by single-cell RNA sequencing of PBMCs from pregnant women with COVID-19
	Impaired ISG expression in pregnant women
	Distinctive gut microbiota species in pregnant women with COVID-19
	Distinct cytokine and chemokine responses in non-pregnant versus pregnant patients with COVID-19
	High body mass index and pregnancy synergistically alter immune responses
	Effect of fetal sex on immune responses in pregnant patients with COVID-19

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Consortia
	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Human participants and data collection
	Clinical and sample definitions

	Method details
	Blood specimen processing
	Flow cytometry-based immune cell profiling
	Monocyte enrichment and stimulation
	Cytometric bead array
	Plasma cytokine and chemokine analysis
	Single-cell cohort details
	PBMC CD45+ enrichment, cell hashing, CITE-seq staining
	Single-cell gene expression, feature bar code, and TCR/BCR library construction and sequencing
	scRNA-seq read alignment and quantification
	RNA data
	Protein data

	Basic and lineage-level single-cell clustering
	Single-cell subset annotation
	Single-cell differential abundance analysis
	Repertoire analysis
	Clone definitions, frequency of clones

	Enrichment of TCR/BCR clones in cell subsets
	Putative epitopes for CD8 TCRs
	HLA alleles
	TCR sequence diversity
	ISG expression analysis
	Metagenomic analysis

	Quantification and statistical analysis



