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Background. A key research priority for developing a human immunodeficiency virus (HIV) cure strategy is to define the viral 
dynamics and biomarkers associated with sustained posttreatment control. The ability to predict the likelihood of sustained 
posttreatment control or noncontrol could minimize the time off antiretroviral therapy (ART) for those destined to be 
controllers and anticipate longer periods off ART for those destined to be controllers.

Methods. Mathematical modeling and machine learning were used to characterize virologic predictors of long-term virologic 
control, using viral kinetics data from several studies in which participants interrupted ART. Predictors of post-ART outcomes were 
characterized using data accumulated from the time of treatment interruption, replicating real-time data collection in a clinical 
study, and classifying outcomes as either posttreatment control (plasma viremia, ≤400 copies/mL at 2 of 3 time points for ≥24 
weeks) or noncontrol.

Results. Potential predictors of virologic control were the time to rebound, the rate of initial rebound, and the peak plasma 
viremia. We found that people destined to be noncontrollers could be identified within 3 weeks of rebound (prediction scores: 
accuracy, 80%; sensitivity, 82%; specificity, 71%).

Conclusions. Given the widespread use of analytic treatment interruption in cure-related trials, these predictors may be useful 
to increase the safety of analytic treatment interruption through early identification of people who are unlikely to become 
posttreatment controllers.
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A priority for developing a human immunodeficiency virus 
(HIV) cure strategy is understanding the viral dynamics and 
biomarkers of HIV posttreatment control to achieve antiretro
viral therapy (ART)–free remission in people with HIV (PWH) 
[1, 2]. Although ART is highly successful at preventing HIV 

replication, it is not curative [1]. HIV rebounds predictably 
in most PWH on interruption of ART, even if treatment was 
initiated early or administered for a prolonged period [3–5]. 
A rare subset of individuals who interrupt ART demonstrate 
posttreatment control, defined as ongoing virologic suppres
sion after ART pause or maintenance of a low virologic set 
point [1, 6].

During analytic treatment interruption (ATI), ART is inter
rupted in a monitored setting to determine the effect of interven
tions on time to rebound or virologic set point [7]. ATIs are not 
risk-free [7]; participants can experience acute retroviral syn
drome, progressive decline in CD4+ T-cell count, and down
stream consequences of immune activation, alongside the 
psychosocial consequences of being off treatment [8]. Sexual 
partners also bear risk, as participants are not virologically sup
pressed and may transmit HIV [9]. Existing guidance addresses 
these challenges [10–13] but limits the feasibility of participation 
in these studies for some individuals. Furthermore, monitored 
ATIs are costly, logistically complex, and labor intensive 
[7, 14]. The ability to predict who is likely to achieve 
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posttreatment control during the earliest phases of ATI could 
minimize the duration off ART and maximize the safety of study 
procedures while making treatment interruptions more accept
able to PWH, their partners, and clinical providers [11, 15].

We developed a predictive model of HIV posttreatment con
trol after ATI using published viral kinetics data. Principles 
outlined in this model could be used to distinguish potential 
controllers from noncontrollers during the first few weeks of 
an ATI, thereby minimizing the time that PWH who are poten
tial noncontrollers remain off ART in future ATI studies.

METHODS

Data Sets

Data on HIV kinetics were obtained from the Control of HIV 
after Antiretroviral Medication Pause (CHAMP) study [6], 
which included a portfolio of Advancing Clinical Therapeutics 
Globally for HIV and Other Infections studies (Table 1) 
[16–30]. CHAMP included PWH treated during early HIV infec
tion and PWH treated during chronic infection. Data were also 
obtained from the GS-US-382-3961 study, including individuals 
who were partial virologic controllers before ART (pre-ART plas
ma HIV-1 RNA, 50–5000 copies/mL) and who interrupted ther
apy after randomly receiving vesatolimod (a Toll-like receptor 7 
agonist; n = 17) or placebo (n = 8) [30]. Posttreatment control 
was defined as plasma viremia ≤400 copies/mL at 2 of 3 time 
points for ≥24 weeks. Data from 298 PWH were analyzed, with 
73 identified as posttreatment controllers.

Mathematical Model

Post-ATI plasma viral kinetics data and mathematical modeling 
were used to describe patterns of rebound after treatment 
(Figure 1A). Data sets with less frequent time points (eg, data 
set A5170) or significant missing data were excluded. Significant 
missing data or data sets with less frequent time points were ex
cluded unless there were adequate data points to consistently char
acterize predictors with viral peaks inferred using modeling.

A piecewise differential equation was used to model viral 
dynamics/kinetics:

dV/dt =
0 if t < t0
αV if t0 < t < t1

−βV if t1 < t < t2

⎧
⎨

⎩

Figure 1A and 1B describe the evolution of viral kinetics from 
time of treatment interruption to time of viral rebound at time, 
t = t0 (region I). This time was estimated as the time of viral re
bound and the rate of viral change, dV/dt = 0, that is, V = δ, a 
constant that is equal to the limit of detection in virus RNA copies 
per milliliter. Within the time interval, t0 < t < t1 (region II), the 
model explains the viral growth rate at rate α per day, and the time 
t1 is the timing of viral peak. The HIV RNA level was obtained by 
solving dV/dt = α or dV/dt = αV , assuming either linear HIV 
RNA replication or exponential growth. Therefore, RNA quanti
ties can be explained using the equations F0(V(t)) = αt + k1 

or V = V(t0)eαt(or F1(V(t)) = V̂ = αt + k2, where V̂ = lnV), 
assuming linear or exponential viral growth. Within the interval 
t1 < t < t2 (region III), the HIV RNA level is given by 
F2(V(t)) = V̂ = −βt + k3, as explained in Figure 1A. Region II 
is defined by viral rebounding at the boundary (at t = t0) of region 

Table 1. Clinical Studies Containing Human Immunodeficiency Virus Viral Kinetics Data Used to Generate Mathematical and Machine Learning Models

Study [Reference]a

Participants, No.

Total Underwent ATI PTCs

ACTG 371 [16] 121 72 11

ACTG A5024 [17] 81 52 2

ACTG A5068 [18] 97 82 8

ACTG A5102 [19] 47 46 0

ACTG A5130 [20] 29 29 0

ACTG A5170 [21] 167 142 7

ACTG A5187 [22] 20 20 1

ACTG A5197 [23] 114 109 2

Montreal PIC [24] 83 NA 6

Seattle Primary Infection Program [25] 329 (Cohort) 27 3

UCSD PIC [26] 616 (Retrospective analysis) 16 0

NIH therapeutic vaccine trial [27] 31 (Enrolled) 29 4

UCSF OPTIONS [28] 372 (Cohort) Early treated, 86; long-term treated, 18 Early treated, 8; long-term treated, 0

Ragon HIV Controllers Group [29] 1528 (Cohort) NA Early treated, 5; long-term treated, 10

GS-US-382–3961 [30] 25 (Vesatolimod, 17; placebo 8) 26 Viremic controllers (pVL,  
50–5000 copies/mL)

6

Abbreviations: ACTG, AIDS Clinical Trials Group; ATI, analytic treatment interruption; HIV, human immunodeficiency virus; NIH, National Institutes of Health; NA, not available; PIC, Primary HIV 
Infection Cohort; PTCs, posttreatment controllers; pVL, plasma viral load.
aAll studies except the last one (GS-US-382–3961) were part of the CHAMP (Control of HIV after Antiretroviral Medication Pause) study.
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I and viral replication until viral peak at t = t1. In region III, the 
HIV RNA level is observed to decline until the viral set point is 
observed at t = t2. For the methods used to estimate viral dynam
ics, time to viral rebound, viral peak, and time to viral peak, see 
the Supplementary Methods.

Machine Learning: Classification and Regression Trees

A Classification and Regression Trees (CART) algorithm was ap
plied to data generated from model fitting (Supplementary 
Methods). Model parameters were time to viral rebound (in
ferred value or observed time to first value above limit of detec
tion), viral growth rate (magnitude of slope α), peak plasma 
viremia (computed or maximum plasma viremia observed with
in the first 6 weeks after viral rebound), and time to viral peak. 
Although predictive of the outcome in preliminary analyses, in 
the final CART algorithm, viral decline slope (β) and viral set 
point were not used because such parameters require prolonged 
observation off ART, and we elected to focus on variables that 
would enable making an early decision that could be applied 
to future trials in real time. Only parameters derived with data 

generated within the first 3–4 weeks after viral rebound (ie, re
gions I and II; Figure 1A) were used, ensuring that early viral ki
netics patterns were used to classify long-term end points.

Data Partitioning

Combined CHAMP and GS-US-382-3961 (N = 298) data were 
randomly split into training (60%), testing (20%), and validation 
(20%) data sets (Figure 1C). The training and testing data sets 
were used to develop an outcome classification decision tree 
and to select the best classifiers. The testing data set was used 
to determine the sensitivity, specificity, and accuracy of the clas
sifiers. The best classifiers were applied to the validation data set, 
imitating real-time clinical trial data collection. Parameters in re
gions I and II were computed with minimum data points as they 
accumulated; once data were sufficient to compute the parame
ters (within 3–4 weeks of viral rebound), the information was 
used to classify participants as controllers or noncontrollers.

A B

C

Figure 1. Model illustration. A, Typical viral kinetics of an analytic treatment interruption (ATI) clinical study participant through 4 different regions. Region I is the period 
when human immunodeficiency virus (HIV) RNA is at or below the limit of detection. Region II is the period when the virus rebounds, resumes replication, and accumulates to 
the peak; this region is followed by reduction of viral replication. Region III contains viral mixed kinetic patterns, and the boundary of this region corresponds with the viral 
nadir (or viral set point). Region IV is associated with steady increase in plasma viremia in noncontrollers and sustained reduced plasma viremia in controllers. Dots represent 
data points for plasma viremia. B, Viral kinetics shown in A are explained with a piecewise ordinary differential equation. The model describes the viral kinetics in each region 
with a parameter, and these parameters are used to learn and characterize early predictors (from regions I and II) that classify ATI long-term outcomes observed in region IV. 
C, Data partitioning into the training, testing, and clinical imitation subsets used to identify and validate the performance of the predictors. The distribution of controllers vs 
noncontrollers was ~25% and was balaned in each data partition.
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Statistical Analysis

Computed variables between ATI posttreatment controllers 
and noncontrollers were compared using a Wilcoxon nonpara
metric test. Variables were considered significantly different at 
P < .05. CART analysis was performed using R software (rpart 
package).

RESULTS

Cohort Characteristics

CHAMP identified 67 posttreatment controllers from 14 stud
ies, including >700 participants. Posttreatment control was de
fined as plasma viremia ≤400 copies/mL at 2 of 3 time points 
for ≥24 weeks. Characteristics of all CHAMP cohorts and the 
GS-US-382-3961 HIV controllers cohort have been described 
elsewhere [30].

Predictors of Post-ART Control and Noncontrol

We developed a segmented/piecewise model to explain partici
pants’ viral kinetics after ATI (Figure 1, regions I–IV), estimating 
time to rebound, viral replication rate after viral rebound in region 
II, and viral peak. The median number of time points per person 
was 16 (95% confidence interval [CI], 9–38.9). Within the data set, 
10% of data points were missing. The median time between visits 
was 4 weeks when including all time points and 1 week when con
sidering data points observed within 10 weeks. Within the data 
set, the 3 required data points were present in 86% and missing 
in 14% of the study participants. Posttreatment controllers had 
significantly lower peak plasma viremia (median HIV RNA 
[95% CI], 2.55 [1.42–4.52] vs 4.58 [2.86–6.30] log10 copies/mL 
for posttreatment controllers and noncontrollers, respectively) 
(Figure 2A). The plasma viremia rate increase after rebound 
was lower for posttreatment controllers than for noncontrollers 
(Figure 2B). The median time to rebound for noncontrollers 

A

C

B

Figure 2. Statistical difference between analytic treatment interruption (ATI) controllers (C) and noncontrollers (NC). A, The peak plasma human immunodeficiency virus 
(HIV) viremia value observed within the first 4 weeks of viral rebound can distinctively separate ATI controllers from noncontrollers (P < .001). B, After rebounding, noncon
trollers have a faster rebounding rate than controllers (P < .001). C, Difference between time to viral rebound, time to viral peak, and time from rebound to peak. The time to 
viral peak did not differ significantly between controllers and noncontrollers (P = .18).
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was ≤14 days versus >28 days for controllers (P < .001). No dif
ference in time to peak between posttreatment controllers and 
noncontrollers (P = .18) was observed due to variable heterogene
ity in the posttreatment controller group (Figure 2C). However, 
posttreatment controllers had a significantly shorter time from 
initial rebound to plasma viremia peak (P < .001); 75% achieved 
viral peak in approximately 21 days.

The CART machine learning algorithm was applied to clas
sify controller and noncontroller outcomes using descriptors of 
viral kinetics with data accumulated within regions I and II 
(Figure 1A). The classification of outcomes is provided in 
Supplementary Figure 1.

Figure 3A–3D depict the decision trees used to classify con
trollers and noncontrollers using the ATI outcomes of peak 
plasma viremia, viral replication rate after rebound, time to vi
ral rebound, and time to viral peak. Table 2 provides the predic
tive sensitivity, specificity, and accuracy scores for these 
variables. Controllers and noncontrollers can be classified 
with a viral threshold (peak of rebound) of 3 log10 HIV RNA 
copies/mL, with sensitivity of 93% (95% CI, 82%–98%), specif
icity of 73% (48%–89%), and accuracy of 88% (78%–94%) 
(Figure 3A). Controllers and noncontrollers were given a predic
tive score based on the rate of viral replication after viral rebound 
(Figure 3B) (sensitivity, 98% [95% CI, 88%–99%]); specificity, 
33% [15%–58%]; and accuracy, 82% [69%–90%]). A plasma 

A B

C D

Figure 3. Decision trees showing classification of analytic treatment interruption (ATI) outcomes. The plasma viremia (observed viral peak) provides the best classification 
of controllers (C) and noncontrollers (NC). A, An ATI participant who attains a viral peak <3 log10 human immunodeficiency virus (HIV) RNA copies/mL is likely to be a post
treatment controller. B, Decision tree based on the viral slope (rate of viral replication). Noncontrollers are shown to be associated with a fast rate of viral rebounding speed. 
C, Time to viral rebound of ≥53 days likely predicts a controller. D, Short time to attain viral peak (<18 days) in a predicted noncontroller.
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viremia rate increase of <0.033 HIV RNA log10 copies/mL/d 
suggested that controllers had a slower viral replication rate 
when rebounding. However, there was considerable overlap in 
time to viral rebound between controllers and noncontrollers 
(75% of noncontrollers and 25% of controllers rebound within 
21 days; Figure 2B).

Sensitivities of 96% and 91%, specificities of 40% and 40%, 
and accuracies of 82% and 78% for time to viral rebound and 
time to viral peak, respectively, are displayed in Figure 3C
and 3D. The peak value for plasma viremia resulted in the 
best predictive scores. Although the plasma viremia rate in
crease after rebound had the highest sensitivity (98%), the spe
cificity was 33%, suggesting misclassification of controllers as 
noncontrollers (when the positive test result is for noncontrol
lers). Time to rebound had a predictive threshold of <53 days, 
showing delayed time to rebound for controllers; however, its 
specificity was 40%, indicating misclassification of controllers 
(Figure 3C, Supplementary Figure 1A and 1D, and Table 2). 
The time to viral peak did not differ significantly between 
controllers and noncontrollers (P = .18), but the time fromviral 
rebound to peak did (P < .001); >75% of noncontrollers took 

>21 days to achieve viral peak, while 75% of controllers 
achieved viral peak within 21 days.

ART Restart Decision Rule

Figures 2 and 3 and Table 2 include evidence and a framework 
to construct an ART restart decision rule/criterion based on the 
clinical data. Figure 4 summarizes the derived decision rule that 
can be applied in real time to a clinical study to help predict, in a 
timely fashion (3–4 weeks after viral rebound), which partici
pants will eventually become noncontrollers, so ART can be re
started without delay. The restart decision rule follows 3 steps, 
requiring weekly measurement of plasma HIV RNA. In step 1, 
after ATI, participants are followed up with weekly plasma HIV 
RNA measurements until a value above the limit of quantifica
tion is observed; the time is recorded as “time to viral rebound.” 
In step 2, plasma viremia is measured weekly for an additional 3 
weeks to determine the viral replication rate and viral peak; this 
requires ≥3 quantifiable HIV RNA data points to compute the 
virus replication rate (ie, to accurately fit a linear regression 
line).

If there are <3 consecutive quantifiable HIV RNA measure
ments during step 2, continue weekly monitoring until ≥3 con
secutive quantifiable HIV RNA data points are available and a 
fitted regression line is recorded. The gradient (viral replication 
rate slope α) of the fitted regression line is recorded as the “viral 
replication rate.” Instead of waiting to observe the true viral 
peak, week 3 plasma viremia can be used as a surrogate and re
corded as “week 3 viral peak.” In step 3, a decision to restart 
ART can be made, using ≤3 of the recorded variables (viral 
peak, time to rebound, viral replication rate) as >75% of non
controllers peak after 21 days and >90% of noncontrollers have 
a viral peak value >3 log10 HIV RNA copies/mL (Figure 3A
and 3C). Using 3 log10 HIV RNA copies/mL as a threshold 
(Figure 3A), if the viral peak (week 3 plasma viremia) is <3 
log10 HIV RNA copies/mL, the participant is classified as a 

Figure 4. Decision rule on how to make a call. Step 1: Follow up the participant 
until an observation above the lower limit of detection is made; record this as the 
time to rebound. Step 2: Follow up the participant for 2 or at most 3 weeks. Record 
the human immunodeficiency virus (HIV) RNA level weekly, and record the slope of 
regression line (rate of viral replication) and HIV RNA level at week 3 (viral peak). 
Step 3: Make a call. If the plasma viremia at week 3 in step 2 exceeds 3 log10 cop
ies/mL at any time within 2–3 weeks, the call is noncontroller; if the plasma viremia 
remains below 3 log10 copies/mL within 3 weeks, then the call is controller. Step 4: 
If results are on the borderline, check whether the time to rebound is <53 days. If 
<53 days, then the call is noncontroller; otherwise, the call is controller. On this 
step also, the regression line is used to consolidate the call; if the regression slope 
(rate of viral replication) is <0.033, then the call is confirmed as controller, other
wise an extra data point (week 4) is required. In region I, blue dots represent HIV 
RNA levels below the limit of detection. In region II, red dots represent HIV RNA 
levels above the limit of detection. Region III is a region of mixed patterns; red 
dots represent values that remain high, and yellow dots identify a pattern with 
an initial decrease in viral load but then with resumption of replication, ending 
with being a noncontroller. Cyan dots represent the opposite, that is, a pattern 
that reverses to viral control. In region IV, red and yellow dots above the yellow 
dashed line represent noncontrollers, and blue dots represent controllers.

Table 2. Prediction Scores in the Testing Data Set

Score

Predictor (95% CI), %a

Viral Peak
Time to 

Rebound
Time to 

Peak
Rate of Viral 
Replication

Sensitivity 93 (82–98) 96 (85–99) 91 (79–96) 98 (88–99)

Specificity 73 (48–89) 40 (20–64) 40 (20–64) 33 (15–58)

Accuracy 88 (78–94) 82 (70–89) 78 (66–87) 82 (70–89)

PPV 91 (80–97) 83 (70–91) 82 (69–90) 81 (69–90)

NPV 79 (52–92) 75 (41–93) 60 (31–83) 83 (44–97)

Prevalence 75 (63–84) 75 (63–84) 75 (63–84) 75 (63–84)

Abbreviations: CI, confidence interval; NPV, negative predictive value; PPV, positive 
predictive value.
aThe viral peak (plasma viremia) provides the highest predictive scores. Time to viral 
rebound, time to peak, and speed of viral rebound produce higher sensitivities than 
plasma viremia in classifying noncontrollers. However, these poorly classify controllers 
(with specificities <41%).
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controller. If the plasma viremia is equal or approximately 
equal to the threshold at the boundary of region II and III (ap
proximately 3 weeks from the time of viral rebound), the week 3 
viral peak can be combined with the time to viral rebound or 
with the viral replication rate. If this does not clarify the deci
sion, data collection can continue to week 4, at which point a 
decision to restart should be made if there is no improvement 
in decision clarity, as shown in Supplementary Table 1.

Clinical Trial Imitation: Clinical Utility

The restart ART approach (Figure 4) was applied to the clinical 
imitation data set (Figure 1C) to simulate how clinical decisions 
are made in clinical trial settings using data accumulated within 
the first 3–4 weeks after viral rebound. Table 3 shows the pre
dictive scores with this approach using the plasma viremia 
threshold of 3 log10 HIV RNA copies/mL at 3 weeks and the 
plasma viremia threshold (3 log10 HIV RNA copies/mL) com
bined with time to viral rebound. Supplementary Figure 2
shows the comparison between viral peak and plasma viremia 
at 3 weeks and the comparison at both points between between 
controllers and noncontrollers. The week 3 viral peak alone 
achieved a sensitivity of 82% (95% CI, 69%–91%), a specificity 
of 71% (45%–88%), and an accuracy of 80% (68%–88%). The 
sensitivity dropped to 76% (95% CI, 61%–86%), while the spe
cificity increased from 71% (45%–88%) to 79% (52%–92%) 
when the viral threshold was used in combination with time 
to viral rebound. However, there was no change in the predic
tive accuracy. An increase in the specificity suggests that 
combining these 2 predictors reduces misclassification of non
controllers as controllers.

Supplementary Table 2 summarizes the clinical interpreta
tion of these tests. If the test is used to identify noncontrollers 
in a study with 100 participants, including 76 noncontrollers 
and 24 controllers, it will correctly classify 82% of noncontrol
lers as noncontrollers and 71% of controllers as true controllers. 
However, it will misclassify 18% of the noncontrollers and 29% 
of the controllers.

DISCUSSION

A major priority in HIV research is to identify a curative in
tervention, recognizing that not everyone can access or adhere 
indefinitely to ART [31]. Currently, most cure studies require 
highly monitored ATIs, which are resource intensive and bur
densome to participants [32, 33]. More importantly, they are 
associated with significant risks to participants and their sex
ual partners, especially regarding prolonged time off ART and 
prolonged periods of viremia while determining whether an 
individual will exhibit posttreatment control [9]. We used 
data from HIV treatment interruption trials to create a deci
sion model to advise when ART should be resumed, based 
on the likelihood that a participant will achieve long-term 
control. Our model leverages clinical data collected within 
the first 3 weeks of virus rebound to classify participants as 
potential posttreatment controllers versus noncontrollers. If 
further validated in prospective studies, this approach could 
minimize time off ART, thereby maximizing safety for poten
tial noncontrollers; reassure participants who wish to remain 
off ART that their continued participation in the treatment 
interruption is warranted; and help prioritize the timing of 
more intensive biologic investigations (eg, tissue biopsies) 
that are often informative in ATI studies. Overall, this data- 
driven approach could make ATI studies more accessible 
and acceptable to PWH who wish to minimize unnecessary 
time off ART.

Our approach is informed by 3 parameters obtained from 
plasma HIV RNA levels collected serially for 3–4 weeks after vi
ral rebound: (1) viral threshold of 3 log10 HIV RNA copies/mL 
within 3 weeks; (2) time to viral rebound; and (3) rate of viral 
replication after viral rebound. For easy application of this ap
proach, we recommend weekly collection of plasma viremia 
readouts using real-time plasma HIV measures instead of wait
ing for the true viral peak. These recommendations ensure that 
if the viral peak (which is sometimes not observable) takes >3 
weeks to be observed, the real-time viral threshold of 3 log10 

HIV RNA copies/mL within 3 weeks has a sensitivity of 82% 
versus 93% of the viral peak, while the specificity scores are 
71% versus 73%, and accuracy scores are 80% versus 88%. 
This is supported by the finding that 75% of posttreatment con
trollers reach peak plasma viremia within 3–4 weeks, while 
>75% of posttreatment noncontrollers attain their viral peak 
after 4 weeks. Therefore, real-time plasma viremia within 
3 weeks is used as a surrogate for viral peak. Moreover, 3 weeks 
ensures that 3 plasma viremia data points are collected, en
abling a robust computation of viral replication rate through 
fitting a linear regression line. Classification can be obtained 
with plasma viremia as a predictor or biomarker, or this can 
be combined with time to rebound. However, if a decision can
not be made, the replication rate can aid in decision making.

Table 3. Clinical Imitation Data Set

Scorea
Viral Peak 

(95% CI), %
Viral Peak + Time To  

Rebound (95% CI), %

Sensitivity 82 (69–91) 76 (61–86)

Specificity 71 (45–88) 79 (52–92)

Accuracy 80 (68–88) 76 (64–85)

PPV 90 (77–96) 92 (79–97)

NPV 56 (34–75) 50 (31–69)

Prevalence 76 (64–85) 76 (64–85)

Abbreviations: CI, confidence interval; NPV, negative predictive value; PPV, positive 
predictive value.
aPredictive scores with this approach when a plasma viremia threshold of 3 log10 human 
immunodeficiency virus RNA copies/mL is used and when that threshold combined with 
time to viral rebound is used.
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Although many studies allow for participants to experience 
high-level viremia for prolonged periods to fully characterize 
the long-term set point, this typically requires waiting ≥8 weeks 
from the time of viral rebound. While this might be preferred 
in certain scenarios, the result is a prolonged—and perhaps 
unnecessary—amount of time off ART for noncontrollers. 
Similarly, time to rebound alone has a sensitivity of 96% in clas
sifying noncontrollers, but it often misclassifies controllers as 
noncontrollers (40% specificity), which is likely to result in pre
mature ART resumption in people who are likely to yield addi
tional important data. This argument is also true for the rate of 
plasma viremia increase after rebound as a biomarker (sensitiv
ity, 98%); however, this has a low specificity (33%) and an ac
curacy of 82%.

Our model’s limitations can be minimized by increasing the 
frequency of plasma sampling, thereby improving the estima
tion of time to viral rebound and true viral peak. Although 
the frequency of plasma viremia sampling may be challenging 
to estimate, and the actual time of viral rebound may be diffi
cult to measure, weekly readouts can improve model estimates. 
While these results are based on clinical data sets, they should 
be further validated in larger, independent, and more diverse 
data sets or cohorts. The participants we included comprised 
a mix of early-treated PWH, long-term treated PWH, and vire
mic controllers, complicating generalizability to a broad popu
lation. Moreover, the ATI studies used here were designed 
differently, with most not including an intervention, and it is 
unclear whether the model is applicable to interventional stud
ies with strict virologic criteria for restarting ART [11]; obtain
ing clinical data with similar designs will improve the training 
and predictive accuracy of this method.

Finally, although we believe our model will promote safety 
by minimizing the duration of ART interruption for those 
who are likely noncontrollers, we note that a proportion of po
tential controllers (25%–30%) may still be misclassified as non
controllers using this model. Given the potential insight to be 
gained from studying posttreatment controllers and the relative 
rarity of this phenotype, further optimization of models to ac
curately predict likely posttreatment controllers is needed. The 
approach described here might be considered too conservative, 
particularly in scenarios in which individuals have completed 
an intense intervention period. Contributors to misclassifica
tion may include features intrinsic to the model or to the nature 
of the data, such as the overall quality or heterogeneity of the 
data due to clinical factors (eg, treatment history, coinfections, 
quality/frequency of sampling, or others). Collecting frequent 
viral readouts (at least weekly) could potentially reduce 
misclassification, especially after viral rebound is observed. 
Our novel approach combines mathematical modeling and 
machine learning methods and could be useful in helping 
researchers and study participants based on the specific cir
cumstances of the study and the participant.

In summary, we used machine learning and mathematical 
modeling to create a decision rule leveraging clinical data col
lected up to 3 weeks after initial virus rebound in ATI studies. 
Within 3 weeks of rebound, key virologic variables can serve as 
predictive biomarkers for ATI posttreatment control for trials 
that do not use strict virologic rebound criteria for restarting 
ART. Further development and refinement of this and similar 
models could potentially make ATI studies easier to perform, 
safer, and more acceptable to participants engaged in HIV 
cure research.
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