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Purpose of review

This review focuses on the viral and immune factors influencing HIV posttreatment control (PTC), a rare
condition where individuals maintain viral suppression after discontinuing antiretroviral therapy (ART).

Recent findings

Studies demonstrate that early ART initiation leads to smaller HIV reservoirs and delayed viral rebound in
PTCs. Virologically, PTCs harbor smaller HIV reservoirs and show lower levels of reservoir transcriptional
activity compared with posttreatment noncontrollers. Immunologically, PTCs exhibit distinct T-cell dynamics,
with reduced CD4þ and CD8þ T-cell activation and exhaustion, enhanced natural killer (NK) cell activity,
and enhanced proliferative responses of HIV-specific CD8þ T cells post-ART interruption. Additionally,
humoral immunity, particularly the development of autologous neutralizing antibodies (aNAbs), plays a role
in viral control, though broadly neutralizing antibodies (bnAbs) are rare.

Summary

The mechanisms behind posttreatment control are multifactorial, involving virological and immunological
factors. Early ART initiation, a smaller and less transcriptionally active HIV reservoir, and immune responses
including proliferative T-cell activity and NK cell function are key contributors to achieving ART-free HIV
remission.
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INTRODUCTION

Despite ART’s effectiveness in suppressing viral rep-
lication, a cure remains elusive due to the persis-
tence of the HIV-1 reservoir [1,2], where replication-
competent proviruses persist in CD4þ T cells [3

&

].
There are multiple cases of HIV cure achieved via
allogeneic hematopoietic stem cell transplantation
or cord blood stem cell transplantation [4–7], but
stem cell transplantation involves a high risk of
morbidity and mortality, and is not a practical
approach for the vast majority of people with HIV.

After an analytic treatment interruption (ATI),
viral rebound typically occurs within a few weeks
[8,9], but the exact timing can vary widely among
individuals, from a rapid reboundwithin days to the
maintenance of viral suppression for years. HIV
posttreatment controllers (PTCs) are a rare subset
of individuals with HIV who can maintain viral
suppression or low-level viremia after discontinuing
antiretroviral therapy (ART) [10

&&

]. Although defini-
tions of posttreatment control can vary across stud-
ies, they represent evidence that sustained ART-free
HIV control is a realistic possibility [11,12]. The
 2024 Wolters Kluwer H
genetic traits of spontaneous controllers (’elite con-
trollers’), such as protective HLA alleles B27 and B57
[13–15], do not appear to be enriched in PTCs
[11,16,17

&&

]. Understanding the mechanisms
behind posttreatment control is vital for developing
strategies to achieve ART-free remission.
THE ROLE OF EARLY ANTIRETROVIRAL
THERAPY INITIATION

Starting ART in the acute phase of infection has been
linked to numerous beneficial outcomes, such as a
smaller HIV-1 reservoir, reduced inflammation, and
preserved immune function [18]. Although some
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KEY POINTS

� Posttreatment control (PTC) in HIV is influenced by
virological and immune factors, with early ART
initiation reducing the viral reservoir size and activity.

� PTCs have smaller and less active HIV reservoirs
compared with noncontrollers, including lower HIV
DNA levels and fewer intact proviruses.

� Immune responses in PTCs, including enhanced HIV-
specific CD8þ T-cell proliferation, stronger CD4þ T-cell
responses, and higher NK cell activity, contribute to
viral suppression post-ART interruption.

� Autologous neutralizing antibodies (aNAbs) play a role
in PTC, though broadly neutralizing antibodies (bnAbs)
are less commonly observed.

� Although early ART improves chances of PTC, starting
ART at the earliest stage of acquisition may reduce the
development of a fully mature immune response.
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individuals treated during chronic infection can
become PTCs, the majority of those identified in
various studies began ART during early HIV infec-
tion [11]. A direct comparison of the impact of early
ART was performed in the CHAMP study, the largest
investigation of PTCs to date [12,19–31]. PTCs were
more frequently found in early-treated individuals
(13%) compared with those treated during chronic
infection (4%), highlighting the impact that early
ART initiation has on increasing the likelihood of
posttreatment control [12].

Other early-treatment studies have also found a
relatively high rate of posttreatment control. The
CASCADE cohort included participants who initiated
treatment within 3months of HIV acquisition, and
founda5.5% frequencyof posttreatment controlwith
a minimum of 24months of control and 8.2% with a
12-month cutoff [32]. Another study revealed that of
PWHwho startedARTwithin6months ofHIV acquis-
ition, 10% achieved PTC and that longer duration on
ARTwas linked toagreater chanceofmaintainingPTC
[33]. On the other hand, a study of eight individuals
who initiated ART during the earliest stage of HIV
infection (Fiebig1) andsubsequentlyunderwent treat-
ment interruption showed that all participants had
rapidviral rebound[34].These results suggest thatART
initiation at the very earliest stages of HIV infection
may actually lower the chances of posttreatment con-
trol, potentially because of an insufficiently mature
antiviral immune response. This concept alignswith a
study with Simian immunodeficiency virus (SIV)-
infected nonhuman primates (NHP) showing that
delaying ART within the first 3 weeks of acquisition
leads to reduced postrebound viral levels. However,
1746-630X Copyright © 2024 Wolters Kluwer Health, Inc. All rights rese
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delaying beyond 3 weeks led to higher viral setpoints
because of immune exhaustion or viral escape [35].
Also using NHPs, it has been demonstrated that early
ART initiation favors PTC through development of
long-term memory CD8þ T cells [36].

Similarly, the ACTG (Advancing Clinical Ther-
apeutics Globally for HIV/AIDS, previously AIDS
Clinical Trials Group) A5345 prospective treatment
interruption study found that early-treated partic-
ipants had significantly smaller and less transcrip-
tionally active HIV reservoirs compared with those
who initiated ART during chronic infection [10

&&

].
Specifically, early-treated participants exhibited
lower levels of cell-associated HIV RNA (CA-RNA),
total and intact proviral DNA, and infectious units
per million resting CD4þ cells by the quantitative
viral outgrowth assay. These results provide insight
into the reasons that early ART treatment may
increase the chances of ART-free HIV control.
VIROLOGICAL CHARACTERISTICS AND
PREDICTORS OF POSTTREATMENT
CONTROL

Total HIV DNA levels

PTCs consistently exhibit lower total HIV DNA lev-
els compared with noncontrollers. An analysis in
the ANRS cohort demonstrated that, among
patients receiving early and extended ART, 16%
presented sustained virological control [37]. These
PTCs shared a common feature of having a very low
and stable viral reservoir as reflected by total HIV
DNA levels. Similarly, in the ANRS CO6 PRIMO
cohort, 8.5% early treated participants (started dur-
ing the first 3months of acquisition) suppressed the
virus [16]. Compared with noncontrollers, PTCs had
higher CD4þ T-cell counts and lower HIVDNA/RNA
levels during infection. Importantly, characteristics
like subtype, genotypic resistance, tropism, HLA
genotype, treatment regimen or treatment duration,
were not associated with posttreatment control.

In the VISCONTI study, which included partic-
ipants from both ANRS cohorts, PTCs exhibited low
cell-associated HIV DNA (CA-DNA) in PBMCs and
CD4þ T cells. Longitudinal data revealed a further
reduction in HIV DNA levels after treatment inter-
ruption in some PTCs, suggesting ongoing reservoir
control and potential depletion [11]. These findings
align with the ANRS SALTO cohort, where partic-
ipants with HIV DNA levels below 150 copies/106

PBMCs at treatment interruption had a higher like-
lihood of sustained viral control [38]. Further sup-
porting these observations, data fromparticipants in
the SPARTAC trial [39] showed that higher HIV DNA
levels at ART interruption were associated with
rved. www.co-hivandaids.com 55
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faster viral rebound [40,41]. However, even in
patients with ultralow levels of CA-DNA, as studied
in the ULTRASTOP study, maintaining long-term
ART-free remission is challenging. In this study,
individuals with HIV DNA levels less than 50 cop-
ies/ml for at least 2 years on ART underwent an ATI.
Only 1 out of 10 patients maintained viral control
after 48weeks of ART interruption, underscoring the
difficulty of achieving sustained remission, even
with small reservoir sizes [42].
Intact reservoir and time to viral rebound

Although total HIV DNA provides an estimate of
reservoir size, it does not distinguish between defec-
tive and replication-competent proviruses, a factor
thatmay further influence time to viral rebound [43].
A key finding from Sharaf et al.’s study on HIV PTCs
identified from prior ACTG ATI studies was the dis-
tinction between defective and intact proviruses in
both PTCs and noncontrollers by near-full length
proviral sequencing [44]. PTCs had significantly
smaller total, defective and intact proviral reservoirs
compared with noncontrollers, a median of about
seven-fold smaller. Interestingly, itwas a smaller total
proviral genome copies that best served as a bio-
marker of posttreatment control [44]. Using the
Intact Proviral DNA Assay (IPDA), intact, defective,
and totalHIVDNA levelswere compared in PTCs and
noncontrollers during suppressive ART, and no sig-
nificant differences were noted in reservoir size
between the two groups at the pre-ATI time point
[17

&&

]. However, during the ATI, noncontrollers
showed significantlymore active and larger reservoir,
including both intact and defective proviruses.

In the prospective ACTG A5345 trial [10
&&

],
early-treated participants generally experienced
delayed viral rebound compared with those treated
during chronic infection. Early-treated individuals
had smaller reservoirs with fewer intact proviruses,
whereas higher levels of intact proviral DNA in
chronic-treated individuals strongly predicted faster
viral rebound [10

&&

].
Reservoir activity

In several studies, levels of CA-RNA before ATI have
predicted the timing of viral rebound after treatment
interruption [8,45]. In an analysis of ACTG ATI stud-
ies, PTCs were found to have numerically lower CA-
RNA levels than noncontrollers before ATI and sig-
nificantly lower CA-RNA during ATI, indicating
reduced viral transcription [17

&&

]. This suggests that
PTCs not only have smaller and more defective res-
ervoirs butalso exhibit less viral geneexpression from
infected cells. To pinpoint which steps in RNA
56 www.co-hivandaids.com
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transcription are distinct between PTCs and noncon-
trollers, HIV-1 RNA products from HIV-1 transcrip-
tion initiation, elongation, and splicing were
analyzed, finding that PTCs had lower levels of
HIV-1 transcription initiation before ATI [46

&

]. Dur-
ing early and late ATI, PTCs had significantly lower
proportion of HIV-1 RNA products that finished
completion. These data highlight potentially areas
of transcriptional blockor potentially immune-based
clearance of cells with completed RNA transcripts.

In the A5345 study, higher levels of CA-RNA
were modestly associated with more rapid HIV
rebound, but this association was not statistically
significant across all participants [10

&&

]. In early-
treated individuals, lower level residual viremia by
the integrase single-copy assay (iSCA) was signifi-
cantly associated with delayed viral rebound. This
relationship was also reported in a study of prior
ACTG studies [8].
Proviral integration site

HIV integration is not random, and the specific
chromosomal location may affect the survival and
proliferation of HIV-infected cells [47,48]. The chro-
mosomal environment surrounding the integration
site can also impactHIV transcriptional activity [49].
A preliminary report of a few PTCs suggests that the
majority of intact proviruses in PTCs are located in
nongenic, centromeric, or ZNF gene regions associ-
ated with deep latency and that the integration site
profile could help identify potential PTCs in future
studies [50]. These results deserve additional explo-
ration in a larger number of participants.
HIV-SPECIFIC T-CELL RESPONSES

One of the studies with early-treated participants,
and a study of early and chronic-treated individuals,
both reported that PTCs had lower CD8þ T-cell
activation during ART and after ATI compared with
noncontrollers [16,17

&&

]. Unlike spontaneous HIV
controllers (HICs), PTCs did not frequently carry
protective HLA alleles [51]. Instead, they often car-
ried risk alleles like HLA-B07 and HLA-B35, which
are associated with faster disease progression [52],
supported by other studies [17

&&

].
T-cell effector function in posttreatment
controllers

In the VISCONTI study, PTCs exhibited weaker HIV-
specific CD8þ T-cell responses to optimal peptides
compared with HICs and viremic patients (VIRs)
[11]. Specifically, the frequency of HIV-specific
CD8þ T cells producing IFN-g was low, comparable
Volume 20 � Number 1 � January 2025
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to individuals on ART, and significantly lower than
in HICs and VIRs [11]. Additionally, the capacity
of PTCs’ CD8þ T cells to suppress HIV infection
ex vivo was poor, comparable to treated patients
and viremic individuals, and much weaker than
in HICs. In another study of individuals with early
ART initiation, the polyfunctionality of both CD8þ
and CD4þ T cells in PTCs was comparable to indi-
viduals who continued ART and long-term non-
progressors [53]. Other studies have also reported
that HIV-specific CD8þ T-cell effector function does
not correlate with HIV-1 reservoir size or posttreat-
ment control [17

&&

].
Interestingly, there is some evidence that stron-

ger HIV-specific CD4þ T-cell responses were associ-
ated with lower viral load set point after treatment
interruption [27]. Leveraging samples from the
CHAMP study, we observed negative correlations
between CD4þ T-cell IFN-g and IL-2 responses to
Gag peptides and CA-RNA levels both pre-ATI and
early ATI, as well as early rebound viral load [17

&&

]
showing that PTCs had higher levels of Gag-specific
CD4þ IFN-g and IL-2-secreting T cells, associated
with smaller HIV reservoirs and lower rebound viral
load during early ATI [17

&&

].
CD8 T-cell proliferative capacity in
posttreatment controllers

Despite relatively weak direct ex-vivo CD8þ effector
responses in the VISCONTI and other studies, a
recent study reported that CD8þ T cells from PTCs
displayed significantly greater proliferative capacity
in response to HIV epitopes after ART cessation com-
pared with noncontrollers [54

&

]. Two other studies
have reached similar conclusions. In one trial, par-
ticipants received a DNA/MVA vaccine, two broadly
neutralizing antibodies (bNAbs), and a toll-like recep-
tor-9 (TLR-9) agonist, followedbyATI [55].Thoseable
to control viral rebound exhibited a significant
increase in proliferating HIV-specific CD8þ T cells,
with this early proliferative response associated with
lowerviral load setpoints [55].A second study involv-
ing four chronic-treated PTCs found no significant
differences in the breadth and magnitude of HIV-
specific T-cell responses [37], but PTCs demonstrated
higher proliferative responses to Gag and Pol pepti-
des, suggesting that these responses may contribute
to viral control [37].

The study indicating that early ART initiation in
NHPs promoted the expansion of memory CD8þ T
cells also highlights that these cells express TCF1, a
transcription factor in stem-like cells that have
enhanced proliferative and suppressive capacities
[36]. A second study further confirmed the critical
role of TCF1þ CD8þ T cells in controlling viral
1746-630X Copyright © 2024 Wolters Kluwer Health, Inc. All rights rese
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replication in NHP, noting their effector functions
in viral suppression [56].
HUMORAL IMMUNITY IN
POSTTREATMENT CONTROLLERS

Autologous neutralizing antibodies

In early-treated participants, autologous neutraliz-
ing antibodies (aNAbs) begin developing during
acute infection and mature during suppressive
ART, enhancing B-cell responses potentially
through residual viral antigen exposure [57

&&

].
aNAbs exert selective pressure on rebounding
HIV-1 variants post-ATI, which often exhibit resist-
ance to neutralization by contemporaneous plasma
[57

&&

]. Interestingly, more robust post-ATI aNAb
responses against pre-ART virus were associated with
lower post-ATI viral loads, emphasizing the poten-
tial of aNAbs to control viral rebound [57

&&

]. In
addition, a study analyzing two PTCs with sustained
viral suppression after ATI reported two distinct
mechanisms of viral control [58], including one
participant with strong aNAb responses. In that
study, one individual maintained long-term viral
control with strong polyfunctional HIV-specific
CD8þ T-cell activity. In contrast, another partici-
pant had weaker HIV-specific CD8þ T-cell activity,
but their long-term viral suppression appeared to be
mediated at least partially through potent autolo-
gous IgG-mediated neutralization of the virus,
maintaining suppression for over 1400days [58].

Findings from the VISCONTI group reported
that PTCs with intermittent viral exposure were
more likely to develop robust functional antibody
responses [59], exhibiting higher levels of Env-spe-
cific memory B cells and cross-neutralizing antibod-
ies. This suggests that brief viral exposures can
trigger coordinated antibody responses that contrib-
ute to controlling HIV-1 infection without contin-
uous ART [59]. One participant developed anti-V1/
V3-glycan bnAbs with a potent bnAb variant show-
ing a broad neutralization efficacy and exhibiting
strong antibody-dependent cellular cytotoxicity
[60]. Although this bnAb did not neutralize the
contemporaneous virus, autologous neutralization
was achieved, suggesting that polyclonal responses
may sustain remission. Notably, an ACTG PTC study
showed no evidence of bnAbs among PTCs [57

&&

].
INNATE IMMUNITY IN POSTTREATMENT
CONTROLLERS

An ACTG PTC study reported higher levels of acti-
vation markers in NK cells before and during early
ATI [17

&&

]. These increased activation levels were
rved. www.co-hivandaids.com 57
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correlated with lower CA-RNA and reduced viral
load rebound. Another ACTG study demonstrated
that higher NK cell activation was associated with
lower levels of defective proviral genomes [44]. In
addition, PTCs had a higher percentage of activated
NK cells compared with noncontrollers, indicating a
more vigorous innate immune response. This sug-
gests that NK cells not only reduce the overall pro-
viral burden but also play an essential role in
controlling HIV replication without continuous
ART [61]. Early ART initiation, an intervention that
increases the chances of ART-free control, preserves
NK cell function and limits the expansion of dys-
functional NK cell subsets [62], as NK cell activation
has also been cited as relevant in the achievement of
posttreatment control [17

&&

]. They also indicated
that NK cells in early-treated individuals had lower
activation levels and were associated with smaller
HIV reservoirs.

Furthermore, soluble inflammatory markers
such as IP10, sCD163, IFN-g, and IL10 were
higher in noncontrollers during ATI compared
FIGURE 1. Key virological and immunological factors associated
viral suppression after discontinuing antiretroviral therapy. On the
early antiretroviral therapy (ART) initiation, which leads to smaller
transcriptional activity. Immunologically, PTCs display enhanced n
neutralizing antibody (aNAb) responses, and increased CD8þ T-c
effector activity and reduced inflammatory markers, contributing t
Mesquita, F. (2024). BioRender.com/b28f109.
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with PTCs [17
&&

]. Another example of robust innate
immune response involves a PTC treated with cyclo-
sporine, IL-2, granulocyte macrophage colony-stim-
ulating factor, and pegylated interferon alfa, who
maintained undetectable viral loads after ATI [63

&

].
This individual showed continuous HIV DNA
decline, accompanied by expanding populations
of memory-like NK cells and cytotoxic gamma-delta
CD8þ T-cell populations. Genetic analysis sug-
gested that favorable KIR alleles and the HLA-
E01:03 genotype may have supported this NK cell
antiviral activity [63

&

].
CONCLUSION

Posttreatment control in HIV is driven by a complex
interplay of smaller viral reservoirs, reduced reser-
voir activity and coordinated immune responses,
potentially including enhanced CD8 T-cell prolifer-
ation, aNAb, and NK cell activity amongst other
features (Fig. 1). Early ART initiation plays a critical
role in increasing the likelihood of achieving
with HIV posttreatment controllers, individuals who maintain
virologic side, posttreatment controllers (PTCs) benefit from
reservoir sizes, fewer intact proviruses, and reduced viral
atural killer (NK) cell activity, stronger autologous
ell proliferative capacity. They also have lower CD8þ T-cell
o effective ART-free HIV control. Created in BioRender.
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posttreatment control, likely due to its multifaceted
impact on both restricting reservoir size/diversity
and preserving host immune function. Understand-
ing these mechanisms for posttreatment control is
essential for developing strategies aimed at achiev-
ing sustained ART-free remission for more individ-
uals with HIV, ultimately guiding future therapeutic
advancements.
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