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Abstract

Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is

interrupted; however, a small fraction remain in viral remission for an extended duration.

Understanding the factors that determine whether viral rebound is likely after treatment

interruption can enable the development of optimal treatment regimens and therapeutic

interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical

framework proposed by Conway and Perelson to construct dynamic models of virus-

immune interactions to study factors that influence viral rebound dynamics. We evaluated

these models using viral load data from 24 individuals following antiretroviral therapy inter-

ruption. The best-performing model accurately captures the heterogeneity of viral dynamics

and highlights the importance of the effector cell expansion rate. Our results show that post-

treatment controllers and non-controllers can be distinguished based on the effector cell

expansion rate in our models. Furthermore, these results demonstrate the potential of using

dynamic models incorporating an effector cell response to understand early viral rebound

dynamics post-antiretroviral therapy interruption.

Author summary

Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy

is interrupted; however, a small fraction remain in viral remission for an extended dura-

tion. The factors that determine viral rebound dynamics after treatment interruption are

not well understood. In this study, we built upon a previous theoretical framework to con-

struct dynamic models of virus-immune interactions to study factors that influence viral

rebound dynamics. We evaluated these models using viral load data from 24 individuals
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following antiretroviral therapy interruption. The best-performing model accurately cap-

tures the heterogeneity of viral dynamics and robustly shows that people who remain in

viral remission for an extended duration after treatment interruption have a higher effec-

tor cell expansion rate compared to those who rapidly rebound. These results demonstrate

the potential of using viral dynamic models incorporating an effector cell response to

understand early viral rebound dynamics post-antiretroviral therapy interruption.

Introduction

Antiretroviral therapy (ART) is successful at suppressing human immunodeficiency virus-1

(HIV-1) below the limit of detection in people with HIV-1 (PWH). However, ART does not

completely eliminate HIV-1 due to the presence of latently infected cells, which have low or no

HIV-1 gene expression, making it difficult for the immune system to recognize and eliminate

them [1]. While continual use of ART robustly controls HIV-1, there are a number of issues

with long-term ART, ranging from how well PWH adhere to treatment [2–5] to the potential

side effects of taking ART long term [6], such as chronic inflammation and HIV-associated neu-

rocognitive disorders [7–10]. Thus, durable ART-free virological control remains a major goal.

Due to the persistence of the latent reservoir [11–18], if ART is interrupted, latently infected

cells that reactivate can lead to viral rebound. In fact, following analytical treatment interrup-

tion (ATI) of ART, most persons with HIV-1, including those with an extremely small latent

reservoir, experience viral rebound typically within weeks [19–23]. But in rare cases, some

individuals maintained low viral loads for an extended duration of months to years

[16,22,24,25]. Individuals, who experience rapid viral rebound, are generally referred to as

non-controllers (NC), while those who control are termed post-treatment controllers (PTC).

The generation of post-treatment control appears to be affected by external factors such as the

timing of ART initiation [17,22,25–28], and in human and nonhuman primate models by viral

suppression mediated by CD8+ cells [29–34]. Thus, understanding the factors associated with

PTC can suggest a clinical path towards durable control in PWH.

Several models have been proposed to explain the mechanisms behind viral rebound fol-

lowing ATI. The studies by Hill et al. [35,36], Pinkevych et al. [37,38], Fennessey et al. [39],

and van Dorp et al. [40] hypothesized rebound as a stochastic process due to the reactivation

of latently infected cells that release virus and initiate a chain of other successful infection

events. Yet, in PTC, viral load is kept at a low level despite a large reservoir size in some people.

This suggests that other factors, such as the immune response, also play important roles in

determining rebound dynamics of HIV-1 [41–48]. For this reason, Conway and Perelson [49]

proposed a model of viral rebound considering both the latent reservoir and immune response

dynamics. Their model demonstrated the combined impact of the immune response and the

size of the latent reservoir on HIV-1 dynamics post-ATI and lays the foundation for this study.

Some modeling studies have also estimated the distribution of time to rebound. For

instance, Conway et al. [50,51] utilized personal biomarkers including HIV-1 reservoir quanti-

fication and cell associated HIV-1 RNA to look at the distribution of time to rebound and fit a

model to viral rebound data from a collection of ACTG (Advancing Clinical Therapeutics

Globally for HIV/AIDS, formerly known as the AIDS Clinical Trials Group) ATI studies [16].

Others studied mathematical and statistical models to fit rebound data of HIV-1 and simian

immunodeficiency virus (SIV) [50,52–54], including studies in which additional treatments

with monoclonal antibodies or immune stimulants were given prior to ATI [31,55,56]. While

these attempts provide valuable insights into the rebound dynamics post-ATI, they either did
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not aim to establish the biological factors that distinguish PTC and NC or did not fit to indi-

vidual viral rebound data. In this work, our objective is to examine whether mechanistic mod-

els with virus-immune interactions can accurately capture the heterogeneity in viral rebound

dynamics and identify potential mechanisms that distinguish the outcomes post-ATI.

Methods

Ethics statement

This research was approved by the Los Alamos National Laboratory Human Subjects Research

Review Board (HSRRB). Patients’ consent was not required because this is a retrospective

study using data from clinical trials reported by Sharaf et al. [57].

Data

We analyze the data of 24 PWH (9 PTC and 15 NC) from Sharaf et al. [57] for whom we have

longitudinal viral load data. The PTC participants were identified from several clinical studies

in the ACTG [58–62]. In Sharaf et al., PTCs were defined as individuals who maintained a

viral load of less than 400 HIV-1 RNA copies/mL for at least 24 weeks post ATI and where

short-term increases (� 2 viral load measurements) of over 400 HIV-1 RNA copies/mL were

not exclusionary. Non-controllers were defined as individuals who did not meet the PTC defi-

nition. We chose to analyze the data between 0- and 52-weeks post ATI to focus on the period

during which the viral load data is often used to classify PTC and NC in clinical settings. Note

that when non-controllers rebounded, they were often put back on ART, which terminated

their data sets.

Mathematical models

Conway and Perelson [49] introduced the following model of viral dynamics to study the phe-

nomenon of PTC:

dT
dt
¼ lT � dTT � bVT

dI
dt
¼ 1 � fLð ÞbVT þ aL � dI � mEI

dL
dt
¼ fLbVT � dLL � aLþ rL

dE
dt
¼ lE þ

bEI
KB þ I

�
dEI

KD þ I
� dEE

dV
dt
¼ pI � cV: ð1Þ

This model (Eq 1) assumes that target cells (T) are produced at constant rate λT and die at

per capita rate dT, respectively. Virus (V) infects target cells with rate constant β and is cleared

at per capita rate c. The infection leads to productively infected cells (I) at a rate 1-fL βVT,

where fL and (1-fL) are the fractions of infections that lead to latently and productively infected

cells, respectively. Infected cells release viruses at per capita rate p and die at per capita rate δ
by viral cytopathic effects. Latently infected cells (L) proliferate and decay at per capita rates ρ
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and dL, respectively, and can reactivate at per capita rate a to become productively infected

cells. In the absence of viral infection, effector cells (E), such as CD8+ T-cells and natural killer

(NK) cells, are produced at rate λE and die at per capita rate dE. During viral infection, the

effector cells recognize infected cells, which stimulates its population to expand. Conway and

Perelson modeled this process using the infected-cell dependent growth term bEI
KBþI

, where b is

the maximal growth rate and KB is the density of infected cells required for the effector cell

growth rate to be at its half-maximal rate. Note if KB is very large, then a large number of

infected cells will be needed to activate the expansion of effector cells, and this will lead to a

less effective effector cell response.

The effector cells kill productively infected cells with rate constant m, or more precisely, a

second order reaction rate constant m, and can become exhausted at maximal rate d. Effector

exhaustion is induced by the upregulation of inhibitory receptors during effector expansion

that ultimately abrogate the expansion and other functional responses. Chronic infections and

cancers typically lead to effector cell exhaustion, which occurs through metabolic and epige-

netic reprogramming of the effector cells that incrementally make them worse at proliferating,

surviving, and performing effector functions, such as killing and releasing diffusible molecules

[63–65]. Conway and Perelson modeled the rate of exhaustion with a similar infected-cell

dependent functional response term dEI
KDþI

. These functional response terms had previously

been suggested by Bonhoeffer et al. [66].

The model formulation assumes a fraction, fL, of infections lead to the production of

latently infected cells. The homeostatic proliferation of latently infected cells at per capita rate

ρ follows from prior work [67–70] and is supported by experimental evidence showing that

latent cells can proliferate without activating (or expressing viral signals) [18,71–74].

A Simplified Model. We formulated variations of the Conway and Perelson model by alter-

ing the model assumptions on the dynamics of latent cells and the effector cells (Section A in

S1 Text). In particular, without effector cell exhaustion, we have Simplified Model 1:

dT
dt
¼ lT � dTT � bVT

dI
dt
¼ 1 � fLð ÞbVT þ aL � dI � mEI

dL
dt
¼ fLbVT � dLL � aLþ rL

dE
dt
¼ lE þ

bEI
KB þ I

� dEE

dV
dt
¼ pI � cV: ð2Þ

For further simplification, we assume that the number of viruses is in quasi-steady state

with the number of infected cells in all models including the Conway and Perelson model, so

that V ¼ p
c I, as in prior work [75,76]. The initial time (t = 0) is when the individuals are taken

off ART. We let Tð0Þ ¼ lT
dT
; Ið0Þ ¼ aLð0Þ

d
;Eð0Þ ¼ lE

dE
; and Vð0Þ ¼ p

c Ið0Þ, which are approxima-

tions of the steady states during ART assuming a small latent reservoir at the time of ATI, that

ART was highly effective and suppressed all new infections, and thus that productively infected

cells were only generated via activation of latently infected cells. We also studied other models

PLOS PATHOGENS Early HIV-1 rebound dynamics following antiretroviral therapy interruption

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012236 July 29, 2024 4 / 19

https://doi.org/10.1371/journal.ppat.1012236


given in Section A in S1 Text. In models without explicit latently infected cell dynamics, we

assume the reservoir size does not vary significantly during the first year post-ATI or during

the off-ART duration for NCs, the time period we study. This implies L(t) = L(0). Whether the

viral load rebounds or not post-ATI is determined by both the immune response and the latent

reservoir size. The influence of the reservoir size at the time of ATI has been studied before

[36,49], thus we choose to examine whether the immune response—without variation in the

latent reservoir size—can capture the viral rebound dynamics for this cohort of participants.

The parameters that we fit, and the fixed parameters are given in Table 1. fL is fixed to 10−6,

meaning only 0.0001% of infections result in latent cell production [77]; however, increasing fL
up to 10-fold, has little effect on the model dynamics. The assumed size of the latent reservoir

was chosen as 1 cell/ml based on estimates of the number of replication competent latently

infected cells per million resting CD4 T cells determined by the quantitative viral outgrowth

assay [78,79] and assuming patients on long-term ART have close to a million CD4+ T cells

per ml. The net rate of change of the latent cell population dL − a + ρ is such that the expected

half-life (t1/2) of the reservoir is 44 months [14,15]. We set dL = 0.004 per day [68], and

a = 0.001 [49], which gives ρ� 0.0045 per day. We remark that the stability of the latent reser-

voir is due to the combined effect of proliferation, death, and activation; however, these

parameter values are only educated guesses. Furthermore, recent data has suggested that due

to proliferation, the reservoir might stop decaying [18].

Data fitting

We used a nonlinear mixed effects modeling approach (software Monolix 2023R1, Lixoft, SA,

Antony, France) to fit Simplified Model 1 and other variants presented in Section A in S1 Text

Table 1. Model parameters. The double dashed line separates parameters that we fit (above) and fixed (below). Refer-

ences for the fitting parameters are provided for comparison purposes.

Parameter Meaning Unit

β Infection rate mL (HIV RNA copies)-1

day-1
[80,81]

λE Production rate of effector cells cells mL-1 day-1 [49]

m Effector cell killing rate constant mL cells-1 day-1 [49]

b Maximum effector cell growth rate day-1 [82]

KB Density of infected cells needed to reach a half-maximal effector cell

growth rate

cells mL-1 [66]

p Viral production rate (HIV RNA copies) day-1 [49]

d Maximum effector cell exhaustion rate day-1 [83]

KD Density of infected cells needed to reach a half-maximal effector cell

exhaustion rate

cells mL-1 [66]

λT Production rate of target cells 104 cells mL-1 day-1 [84]

dT Death rate of target cells 0.01 day-1 [68]

fL Fraction of latently infected cells produced per infection 10−6 [49]

a Reactivation rate of latently infected cells 0.001 day-1 [49]

δ Death rate of infected cells 1 day-1 [85]

dE Death rate of effector cells 2 day-1 [83]

L0 Steady state size of the latent reservoir 1 cell mL-1 [78,79]

dL Decay rate of the latent reservoir 0.004 day-1 [14,68]

ρ Latently infected cell proliferation rate, dL þ a � logð2Þ=t1=2 0.0045 day-1 [49,86]

c Clearance rate of virus 23 day-1 [87]

https://doi.org/10.1371/journal.ppat.1012236.t001
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to the viral load data for all individuals simultaneously. We applied left censoring to data

points under the limit of detection.

We assumed the fitting parameters follow a logit-normal distribution as we constrained the

parameters to be in a fixed range. λE, b, m, and d were constrained between 0 and 10 times the

reference values used in Conway and Perelson (Table 1). Imposing bounds on λE, b, m, and d
is not necessary; however, this allows us to get the most consistent results across all models

tested. We fit β and constrained its range between 10−7.5 and 10−12 mL (HIV RNA copies)-1

day-1 to avoid an unrealistically high viral surge within 24 hours post-ATI due to high values

of β. Parameter p was constrained between 0 and 5000 per day. Parameters KB and KD were

constrained between 0 and 100,000 cells per mL. Without this upper bound, KD values often

tended to infinity. Note that although KD does not appear in Simplified Model 1, it does appear

in other model variations that we examined (see Section A in S1 Text). No covariate was used

during the initial fitting and comparison of all models. A covariate based on whether a partici-

pant is classified as PTC or NC was used later with the best fit model to determine the factors

that can distinguish these two groups. Model comparison was done using the corrected Bayes-

ian Information Criterion (BICc) [88] as reported by Monolix.

Result

Model fit and comparison

We fit the Conway and Perelson model and variations of it with different assumptions on the

dynamics of latent and effector cells (see Section A in S1 Text). The best fit model was Simpli-

fied Model 1 described in Eq (2), where effector cell exhaustion is disregarded. Its best-fit to

the data is shown in Fig 1. Comparisons of best fits for other models along with population

and individual parameters are shown in Figs A-F and Tables A-M in S1 Text. The only differ-

ence between Simplified Model 1 and the Conway & Perelson model is the lack of an exhaus-

tion term, which suggests exhaustion is not necessary to explain early viral rebound dynamics

(within the first 52 weeks) seen in this set of PWH. This is further supported by the negligible

effect of exhaustion estimated from the best fits for the Conway & Perelson model and Simpli-

fied Model 3, where the values for d and KD result in a much smaller exhaustion effect com-

pared to the reference values (Tables B and D in S1 Text). This does not imply that effector

exhaustion is not relevant to HIV rebound dynamics as it is potentially important to explain

the eventual loss of control as occurred in the subset of PTCs who have a truncated x-axis in

Fig 1 and in the CHAMP study [25]. In addition, it is an important mechanism to explain the

phenomenon where a PTC can have a high viral set point pre-ART and a lower viral set point

post-ATI [49], and a variety of other dynamical phenomena [56,64,89].

Interestingly, the best fit parameter values for Simplified Model 1 with the exception of KB

are close to the parameter values used in Conway and Perelson (compare Tables 1 and 2). This

is also true for Simplified Model 1 even when we do not impose bounds on λE, b, and m. All

models with effector cell dynamics fit the data relatively well (Table A in S1 Text), which is

indicative of the importance of including in the model the dynamics of a population of effector

cells that can kill productively infected cells.

We stratified the best fit parameters (Simplified Model 1) for each person by whether they

were PTC or NC (Fig H in S1 Text). The most statistically significant difference using the

Mann-Whitney test between the PTC and NC group is the parameter KB (p-value: 0.0005), fol-

lowed by the immune cell killing rate m (p-value: 0.0169). All model parameters differ at least

somewhat between these two groups; however, the degree of significance of the difference for

each parameter varies among models. In contrast, the statistically significant difference of KB
between PTC and NC is consistently observed across all models tested (Figs G-J in S1 Text).
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This observation prompted us to fit Simplified Model 1 using a covariate on KB between

PTC and NC. This modification significantly improves the model by 26 BICc points (Fig B

and Table A in S1 Text); however, further inclusion of other covariates improves the fit slightly

but worsens the BICc score (Table A in S1 Text). The best fit population value of KB for PTC

1.19 cell mL-1 is consistent with the value in Conway and Perelson [49], which indicates a fast

expansion of effector cells. The best fit population value of KB for NC is 230-fold higher, indi-

cating a slower expansion of effector cells (Table 3).

Stratification of the best fit parameter values for Simplified Model 1 with a covariate on KB
shows that the inclusion of a covariate on KB is sufficient to explain the variation between PTC

and NC (Fig 2). Indeed, comparing the stratified individual parameters estimated using Sim-

plified Model 1 without a covariate (Fig H in S1 Text) and with a covariate on KB (Fig 2), we

find that the statistically significant difference between the PTC and NC observed for all other

model parameters vanishes. For completeness, we also tested whether having a covariate on

Fig 1. Best fit of Simplified Model 1 to the post-ATI data from Sharaf et al. [57]. Green indicates PTC. Dark orange

indicates NC. The horizontal dashed line is the limit of detection. Open circles are data points below the limit of

detection (50 viral RNA copies/mL). Filled circles are data points above the limit of detection. Note the x-axis scale

varies for the NCs as many of them were put back on ART terminating the data set.

https://doi.org/10.1371/journal.ppat.1012236.g001

Table 2. Best fit population parameters (Simplified Model 1) vs. reference values from Conway and Perelson [49].

Parameter Best fit values (population estimate) Reference values

β 1.51×10–8 mL day-1 1.5×10–8 mL day-1

λE 1.45 mL-1 day-1 1 mL-1 day-1

m 0.83 mL day-1 0.42 mL day-1

b 4.68 day-1 1 day-1

KB 52.62 mL-1 0.1 mL-1

p 3477 day-1 2000 day-1

https://doi.org/10.1371/journal.ppat.1012236.t002
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other parameters can improve the fit and remove the statistically significant variation in all

other parameters including KB. We find that adding a covariate on other parameters (one by

one) not only does not improve the fitting compared to the fit with a covariate on KB (Table A

in S1 Text), but it also has no effect on the statistically significant difference in KB between

PTC and NC. To see whether the model can fit the data well without accounting for individual

variation in KB, we tested Simplified Model 1 without random effect for KB, which results in

worse fits (Table A in S1 Text). Altogether, these results support the inclusion of a covariate on

KB as well as including individual variation in KB.

Analytical approximation of the rebound dynamics

To better explain why KB separates the NC and PTC participants, we approximated analytically

the viral set point Vss after rebound (see Section E in S1 Text) and found

VSS �
p
c

mlE � 1 � fLð Þb
p
c

� �
lT
dT

� �
� d

� �
dE

h i
KB

1 � fLð Þb
p
c

� �
lT
dT

� �
� d

� �
dE � bð Þ � mlE

: ð3Þ

Comparing Vss with the predicted viral load set-point obtained with the full model dynam-

ics (Fig K in S1 Text) demonstrates the accuracy of this approximation.

The clinical classification of PTC individuals by Sharaf et al. is centered on the viral set

point and how long it takes to rebound above the threshold of 400 viral RNA copies/mL (i.e.,

24 weeks or longer of viral load below 400 copies/mL) [57]. The viral set point approximation

Vss shows that the rebound classification is influenced by many factors in highly nonlinear

ways. Yet, Vss is simply proportional to KB, which may explain why the estimated value of KB
for each individual separates PTC and NC in the model fits (Table H in S1 Text).

Distinct immune response between PTC and NC

We calculated the effector cell expansion rate per infected cell bE
KBþI

� �
and the ratio of effector

cells to infected cells (E/I) using the best fit parameters for each individual given in Table I in

S1 Text. There is a clear distinction in both quantities between PTC and NC (Fig 3). The effec-

tor cell expansion rate for individuals in the PTC group is several times higher than for indi-

viduals in the NC group (Fig 3A). This result is not surprising given that KB is the only

statistically significant difference between the two groups, where higher KB for the NC group

leads to a slower expansion rate of the effector cells. Additionally, in PTC individuals, the

model predicts at least one effector cell per infected cell throughout the studied duration,

Table 3. Best fit population parameters (Simplified Model 1 with a covariate on KB) vs. reference values from

Conway and Perelson [49].

Parameter Best fit values (population estimate) Reference values

β 1.58×10−8

mL (HIV RNA copies)-1 day-1
1.5×10−8

mL (HIV RNA copies)-1 day-1

λE 0.50 cells mL-1 day-1 1 cells mL-1 day-1

m 1.72 mL cell-1 day-1 0.42 mL cell-1 day-1

b 5.40 day-1 1 day-1

KB(PTC) 1.19 cells mL-1 0.1 cells mL-1

KB(NC) 277 cells mL-1 —

p 3220 (HIV RNA copies) day-1 2000 (HIV RNA copies) day-1

https://doi.org/10.1371/journal.ppat.1012236.t003
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whereas in NC individuals, the model predicts about one effector cell for hundreds of infected

cells on average (Fig 3B).

Discussion

Differences in the size of the latent reservoir at the time of ART interruption and virus-

immune interactions have been recognized as key factors in achieving post-treatment control

[49]. Here, our modeling results robustly demonstrate that differences in the expansion rate of

the effector cells differentiate PTC and NC in this cohort of 24 PWH.

The size of the latent reservoir determines the overall rate of reactivation of latent cells,

which can lead to HIV-1 rebound post-ATI, as pointed out by Hill et al. [35]. However, to do

so requires the reactivated cells to start a chain of infections that leads to exponential growth.

If the immune system detects these newly reactivated cells and reacts fast enough and strongly

enough, it can interrupt this chain of infection events and lead to PTC rather than non-control.

Fig 2. Summary of best fit parameters in Simplified Model 1 with a covariate on KB stratified based on PTC or

NC. The median value of KB for PTC is 0.94 cell mL-1. The difference in the values of KB is the most significant

between PTC and NC. All other parameters are not statistically different between PTC and NC.

https://doi.org/10.1371/journal.ppat.1012236.g002

Fig 3. Model predicted viral and immune dynamics using Simplified Model 1 with a covariate on KB. Green is PTC

and dark orange is NC. (A) The effector cell expansion rate ( bE
KBþI

) on a log10 scale. (B) The ratio of E vs. I plotted on a

log10 scale.

https://doi.org/10.1371/journal.ppat.1012236.g003
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Thus, in addition to the size of the reservoir, which Sharaf et al. [57] found to be 7-fold lower

in PTCs than in the NCs, other factors, such as virus-immune interactions, may also affect the

viral dynamics post-ATI. Esmaeilzadeh et al. [47] showed that autologous neutralizing anti-

bodies apply selection pressure on rebounding variants and may play a role in mediating HIV

suppression after ATI. Conway and Perelson [49] suggested that when the immune response is

strong, PTC can be achieved. Our modeling results illustrate this concept by accurately captur-

ing the early viral rebound dynamics in this cohort of 24 PWH.

We found that KB the density of infected cells needed to stimulate effectors cells into growth

at their half-maximal rate, is significantly lower in PTC compared to NC. Since the clinical def-

inition of PTC depends on the post-ATI set point viral load, and we showed there is an

approximately linear relationship between this viral set point and KB in our model (Eq 3), this

explains the distinct estimates of KB for PTCs and NCs. These results established an analytical

relationship between an early and suppressive immune response and the viral rebound

dynamics, echoing the recent results in the SIV system by Vemparala et al. [90]. In practice, it

is unlikely that all model parameters including KB for an individual can be estimated prior to

an ATI study. However, if an estimate of the value of KB can be obtained, perhaps via correla-

tion with individual’s immunological markers, then it may be possible to determine a thresh-

old value of KB that separates PTCs and NCs a priori.

A plausible biological interpretation of the variation in KB comes from the studies of T cell

expansion after contact with an antigen presenting cell (APC) [91,92]. Derivation of KB based

on the binding kinetics of a T cell to an APC results in KB ¼
kpþkd
kb

, where kb, kd and kp are the

rate constants for T cells binding, dissociation and first order activation/proliferation, respec-

tively. This means that a higher binding affinity, i.e., higher kb and/or lower kd, would result in

a lower KB, which gives the interpretation that effector cells in PTC individuals have a higher

binding affinity to the antigens presented on the surface of HIV-1 infected cells than the effec-

tor cells in NC individuals. This implies that the observed variation in KB may relate to differ-

ent class I HLA alleles that present the HIV-1 peptides to CD8+ T cells carried by PTC and NC

[93–98]. Alternatively, KB could also vary with the effector cell proliferation rate and cytotoxic-

ity. For example, antigenic stimulation in vitro and ex vivo experiments have shown that CD8

+ T cells from controllers can proliferate and increase their cytolytic capability more efficiently

than those from progressors [99–101]. The effector cell population also includes other cell

types, such as NK cells, and there is some evidence that NK cells may play an earlier role than

CD8+ T-cells in the control of HIV-1 [42,48]. However, these interpretations remain specula-

tions as KB is modeled as the number of infected cells needed to stimulate robust effector cell

expansion, so the precise mechanism associated with KB is difficult to infer without a more

detailed immunological model and data. Delineating the exact biological mechanisms that

contribute to the differentiating values of KB, perhaps via ex-vivo stimulation, characterization,

and TCR-sequencing of CD8+ effector cells in addition to viral sequencing from individuals

participating in ATI trials, may aid in finding the right targets for an effective design of vac-

cines and treatments for HIV-1.

Our results demonstrate that a variation of the Conway-Perelson model without effector

cell exhaustion can characterize the viral rebound dynamics in the cohort of 24 individuals

from Sharaf et al. [57]. However, there are limitations to the current study that should be

noted for future investigation. First, although there is considerable heterogeneity in viral

rebound dynamics in the 24 studied participants, this data set is still limited and may not be

representative of the broader population of PWH. For instance, the CHAMP study [25] con-

tains individuals with more complex viral rebound dynamics and sometimes a very high initial

viral peak before viral remission, which our model fits miss. In addition, since we employed a
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population fitting approach to fit a data set with mostly non-oscillatory individual data, the

best fit model fails to capture the oscillatory features exhibited by several individuals (13, 20,

22, and 23 –Figs 1 and B in S1 Text). This suggests further examination of our modeling frame-

work using data with more heterogeneous viral rebound dynamics is necessary to generalize

our results.

Second, while our parameter estimates indicate limited exhaustion of effector cells (Tables

B and D in S1 Text), this could be due to several factors such as the duration of ART and the

one-year time constraint we put on the data. ART has been shown to restore the functionality

of HIV-1 specific CD8+ T-cells and NK cells [102,103], hence lowering the exhaustion level of

effector cells. Therefore, exhaustion at the start of ATI may potentially be very limited and

unobservable to our model within the one-year time constraint. This limitation is evident

when considers participants such as PTC number 7, who showed signs of viral rebound (~2

log increase in viral load) toward the end of year one, which is not captured by the best fit

models. Thus, it is likely that effector cell exhaustion plays a role in PTCs who rebound later.

Future studies should look further into the interaction of the immune system and virus over

longer time scales to examine the possibility of rebound after the initial short-term viral remis-

sion. It is also worth pointing out that Simplified Model 2, which does not consider the dynam-

ics of latently infected cells, can fit the data almost as well as Simplified Model 1. This is also

likely due to the maximum one-year time constraint in the data and the slow dynamics of the

latent reservoir. When considering a time scale on the order of years, some of the assumptions

we made in order to derive the approximation of the viral set point are unlikely to hold such as

that target cells remain at their disease-free equilibrium value of λ/dT−see the derivation in S5.

Thus, this necessitates more intricate mathematical analyses to ascertain the impact of immune

parameters, such as KB, on the viral set point [104].

A third - and intriguing–observation, which we did not consider, is that in some PWH, the

viral set point post-ATI is orders of magnitude lower than before ART [22]. Qualitatively, this

relates to the bistability of the Conway-Perelson model with respect to different initial condi-

tions such as the size of the latent reservoir and the immune response at the time of ATI. If

ART can sufficiently reduce the viral burden, it may allow the immune response to catch up.

This may happen via the restoration of functionality for HIV-1 specific CD8+ T-cells and NK

cells during ART [102,103]; however, the restoration effect may not be sufficient to improve

the immune response in NCs to the level of PTCs in most cases [105].

Lastly, by choosing to focus on estimating the immune response parameters in our study,

we assumed that the initial conditions of the model for all 24 individuals at the time of ATI

were the same. While this assumption is not ideal, when fitting both the initial conditions and

the immune parameters, the resulting parameter estimates vary significantly across all partici-

pants and models, likely due to parameter identifiability issues, which makes determining the

key parameters an unrealistic task. Nevertheless, even with these limitations, our modeling

results robustly demonstrate that variation in the effector cell expansion rate sufficiently cap-

tures the heterogeneity in viral rebound dynamics post-ATI.

Supporting information

S1 Text. Supplementary Material. Table A. Model fit comparison (Monolix 2023R1, Lixoft,

SA, Antony, France). There are four categories separated by double-lines. Bolded values are

the lowest values in the category. The first category contains the Conway and Perelson model

with five variations without covariates. The second category tests single covariates for the best

fit model in the first category. The third category shows two examples of using two covariates

that produce the lowest fitting error. The last category tests the Simplified Model 1 without
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random effect for KB. Without a random effect, the population estimate for KB is 16.88 (S.E.

0.12)cells mL-1. Table B. Best-fit population parameters for the Conway & Perelson Model vs.

reference values from Conway and Perelson [49]. Note the estimated values of KD and d result

in a negligible effect of exhaustion. Table C. Best-fit population parameters for the Simplified

Model 2 vs. reference values from Conway and Perelson [49]. Table D. Best-fit population

parameters for the Simplified Model 3 vs. reference values from Conway and Perelson [49].

Note that the estimated values of KD and d together imply the exhaustion effect is very small,

which may be because of this particular set of participants or that it cannot be observed from

the limited data. Table E. Best-fit population parameters for the Simplified Model 4 vs. refer-

ence values from Conway and Perelson [49]. Note that m* is not the same as m. Table F. Best-

fit population parameters for the Simplified Model 5 vs. reference values from Conway and

Perelson [49]. Note that m* is not the same as m. Table G. Individual best-fit parameters–Con-

way & Perelson model. Table H. Individual best-fit parameters–Simplified Model 1. Table I.

Individual best-fit parameters–Simplified Model 1 with a covariate on KB (1 is PTC and 2 is

NC). For KB, the mean and SD (%) are reported for individual group PTC/NC. Table J. Indi-

vidual best-fit parameters–Simplified Model 2. Table K. Individual best-fit parameters–Simpli-

fied Model 3. Table L. Individual best-fit parameters–Simplified Model 4. Table M. Individual

best-fit parameters–Simplified Model 5. Fig A. Best fit of the Conway & Perelson model to the

post-ATI data from Sharaf et al. [57]. Green indicates PTC. Dark orange indicates NC. The

horizontal dashed line is the limit of detection. Open circles are data points below the limit of

detection (50 viral RNA copies/mL). Filled circles are data points above the limit of detection.

Fig B. Best fit of Simplified Model 1 with a covariate on KB to the post-ATI data from Sharaf

et al. [57]. Lines show the model predictions using the best fit parameter values from Simpli-

fied Model 1 with a covariate on KB. Green indicates PTC. Dark orange indicates NC. The hor-

izontal dashed line is the limit of detection (50 viral RNA copies/mL). Open circles are data

points below the limit of detection. Filled circles are data points above the limit of detection.

Fig C. Best fit of the Simplified Model 2 to the post-ATI data from Sharaf et al. [57]. Green

indicates PTC. Dark orange indicates NC. The horizontal dashed line is the limit of detection.

Open circles are data points below the limit of detection (50 viral RNA copies/mL). Filled cir-

cles are data points above the limit of detection. Fig D. Best fit of the Simplified Model 3 to the

post-ATI data from Sharaf et al. [57]. Green indicates PTC. Dark orange indicates NC. The

horizontal dashed line is the limit of detection. Open circles are data points below the limit of

detection (50 viral RNA copies/mL). Filled circles are data points above the limit of detection.

Fig E. Best fit of the Simplified Model 4 to the post-ATI data from Sharaf et al. [57]. Green

indicates PTC. Dark orange indicates NC. The horizontal dashed line is the limit of detection.

Open circles are data points below the limit of detection (50 viral RNA copies/mL). Filled cir-

cles are data points above the limit of detection. Fig F. Best fit of the Simplified Model 5 to the

post-ATI data from Sharaf et al. [57]. Green indicates PTC. Dark orange indicates NC. The

horizontal dashed line is the limit of detection. Open circles are data points below the limit of

detection (50 viral RNA copies/mL). Filled circles are data points above the limit of detection.

Fig G. Summary of best-fit parameters in the Conway & Perelson Model stratified based on

PTC or NC. The difference in the values of KB is the most significant between PTC and NC.

Fig H. Summary of best fit parameters in Simplified Model 1 stratified based on PTC or NC.

The difference in the values of KB is the most significant between PTC and NC. Fig I. Summary

of best-fit parameters in the Simplified Model 2 stratified based on PTC or NC. The difference

in the values of KB is the most significant between PTC and NC. Fig J. Summary of best-fit

parameters in the Simplified Model 3 stratified based on PTC or NC. The difference in the val-

ues of KB is the most significant between PTC and NC. Fig K. Approximation of the set point

viral load Vss using the best fit parameters for each participant compared with the numerical
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solution of Simplified Model 1 (Eq 2). The horizontal black dotted line is the approximation

Vss (Eq 3). Green and dark orange curves correspond to the viral load of the PTC and NC par-

ticipants, respectively, as predicted by the Simplified Model 1. The horizontal pink dashed line

is the 400 viral RNA copies/mL threshold used in the classification of PTC. For participant

number 8, Vss is at 0.61 viral RNA copies/mL, which is the full model predicted viral set point

after day ~12000.

(DOCX)

S1 Data. This contains the de-identified viral load data of all 24 participants analyzed in

this study.
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