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Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level 
viremia on antiretroviral therapy (ART) without evidence of ART 
non-adherence or significant drug resistance. Unraveling the mechanisms 
behind NSV would broaden our understanding of HIV-1 persistence. Here 
we analyzed plasma virus sequences in eight ART-treated individuals 
with NSV (88% male) and show that they are composed of large clones 
without evidence of viral evolution over time in those with longitudinal 
samples. We defined proviruses that match plasma HIV-1 RNA sequences as 
‘producer proviruses’, and those that did not as ‘non-producer proviruses’. 
Non-suppressible viremia arose from expanded clones of producer 
proviruses that were significantly larger than the genome-intact proviral 
reservoir of ART-suppressed individuals. Integration sites of producer 
proviruses were enriched in proximity to the activating H3K36me3 
epigenetic mark. CD4+ T cells from participants with NSV demonstrated 
upregulation of anti-apoptotic genes and downregulation of pro-apoptotic 
and type I/II interferon-related pathways. Furthermore, participants with 
NSV showed significantly lower HIV-specific CD8+ T cell responses compared 
with untreated viremic controllers with similar viral loads. We identified 
potential critical host and viral mediators of NSV that may represent targets 
to disrupt HIV-1 persistence.

For the majority of persons with human immunodeficiency virus (PWH), 
antiretroviral therapy (ART) suppresses HIV-1 RNA to below the level 
of commercial assay detection1–5. However, a subset of PWH demon-
strate persistent low-level viremia while on ART6,7, a condition that not 

only represents a clinical conundrum for the clinician but can lead to 
substantial stigma and distress for the patient. Persistent low-level 
viremia has historically been attributed to suboptimal ART adherence 
and/or accumulating human immunodeficiency virus-1 (HIV-1) drug 
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epigenetic marks28 and nuclear speckle proximity29. The reservoir 
landscape changes over time in response to ART and the host immune 
response to a quasi-homeostatic state marked by cell loss and clonal 
expansion30–36. A key goal of this study was to assess aspects of host 
proviruses that contributed to NSV. Longitudinal single-genome 
sequencing of near-full-length proviruses and plasma HIV-1 pol-env RNA  
was performed.

A total of 1,987 single-genome proviral sequences and 222 
single-genome plasma sequences were generated for the eight par-
ticipants with NSV. Longitudinal plasma HIV-1 sequences were obtained 
for four participants with available sampling (LV1, LV7, LV8 and LV9), 
at a median 4.5 time points, an average of 9.7 months apart (Fig. 1a and 
Extended Data Fig. 1). While the ART regimen was adjusted during the 
NSV for some participants, virologic suppression was not achieved 
(Extended Data Fig. 1).

Phylogenetic analysis confirmed that sequences from each par-
ticipant partitioned into separate clusters (Supplementary Fig. 2). 
We next looked for evidence of longitudinal HIV-1 sequence changes 
consistent with the active infection of new cells. Neighbor joining 
trees of proviral and plasma sequences for these eight participants 
instead showed that the plasma sequences were dominated by one 
or two clones, with no evidence of viral evolution, consistent with 
plasma virus originating from a transcriptionally active population 
of HIV-1-infected cells (Figs. 1b and 2a). For the initial analysis, pro-
viral sequences were considered intact if they either did not harbor 
obvious defects or were linked to plasma sequences. At the time of 
study entry, the two largest plasma HIV-1 clones accounted for a 
median 71% (Q1–Q3: 27–83%) of all plasma sequences and were linked 
to a median 26% (Q1–Q3: 14–61%) of all intact proviral sequences 
(Extended Data Fig. 2a). Overall, intact proviruses accounted for a 
median 4.5% (Q1–Q3: 3.8–15%) of the proviral reservoir, with a high 
degree of variation evident from two participants (LV2 and LV9). LV2 
and LV9 proviruses were dominated by several large clones of intact 
sequences that represented 76% and 34% of their total peripheral 

resistance8,9. Previous studies supporting the presence of active viral 
replication have reported that ART resistance mutations can accumu-
late when viremia persists in the low but detectable range10,11 and that 
low-level viremia can increase the risk of virologic failure12. However, 
there has been intriguing evidence that persistent low-level viremia can 
be maintained for long periods without leading to high-level virologic 
failure or the development of new resistance mutations13–18. This subset 
of individuals with persistent low-level viremia without evidence of ART 
non-adherence or meaningful drug resistance are defined as having 
non-suppressible HIV-1 viremia (NSV).

Clonal expansion of HIV-infected cells represents a key contribut-
ing factor for HIV-1 persistence, and recent studies have suggested that 
this plays an important role in NSV as well. Halvas et al. also studied a 
cohort of participants with NSV, reporting that the majority of plasma 
variants were composed of clusters of identical sequences without 
signs of viral evolution, which is consistent with the plasma viruses 
originating from a transcriptionally active viral reservoir rather than 
new rounds of infection1. While NSV was fueled by large populations 
of clonally expanded HIV-infected cells, the mechanisms that lead to 
the establishment and maintenance of NSV, and the NSV-generating 
proviral reservoirs, remain understudied. In this Article, we character-
ized a cohort of eight participants with NSV, and performed in-depth 
ART drug concentration testing, alongside viral and host cell genetics/
genomics and immune profiling. We identified features of host integra-
tion sites that differentiated proviruses fueling NSV from those that 
were not contributory. Transcriptomic and immunologic phenotyping 
studies further highlight potentially permissive host cell and cellular 
immune environments in patients with NSV. These results provide the 
most comprehensive evaluation so far of the viral, cellular and immune 
mediators of NSV.

Participant characteristics and assessment of 
ARV levels
We enrolled eight participants with ongoing NSV, 88% men, with a 
median age of 60 years and median ART duration of 10 years. The 
median duration of virologic suppression before the NSV and dura-
tion of NSV for all participants were 4 and 2 years, respectively. Dur-
ing the NSV episodes, the median viral load was 143 copies ml−1 and 
the median CD4 count was 798 cells µl−1 (Table 1 and Supplementary  
Table 1). Individual participant characteristics, ART regimens and 
genotypic susceptibility scores (GSS)19 of plasma viruses sequenced 
during NSV are presented in Supplementary Table 1. All participants 
were receiving at least two active antiretroviral drugs during the NSV 
episodes. Characteristics of the ART-suppressed and viremic control-
lers (VCs) historical comparator participants are presented in Sup-
plementary Tables 2–4.

We assessed ART adherence by quantifying antiretroviral  
(and their anabolites) drug concentrations in plasma or through dried 
blood spot (DBS) testing. LV1 and LV2 had plasma dolutegravir and 
darunavir concentrations consistent with ongoing ART use (Supple-
mentary Table 5). LV3 and LV5-9 had DBS tests for tenofovir (TFV-DP, a 
measure of cumulative tenofovir/tenofovir alafenamide adherence)20,21 
and emtricitabine (FTC-TP, a measure of recent emtricitabine dosing 
within the preceding 7 days)22,23. The median (range) FTC-TP level was 
5 (4.4–6.7) pmol per punch and TFV-DP level was 3,702 (2,771–6,684) 
fmol per punch24. These concentrations are consistent with expected 
levels in ART-suppressed individuals, including the highest odds of sup-
pression and lowest odds of future viremia20,23,25,26, suggesting that our 
participants with NSV had both high levels of short-term and cumula-
tive ART adherence (Supplementary Fig. 1 and Supplementary Table 5).

Plasma NSV were composed of large clones 
without evolution
HIV-1 integration targeting preferences are demarcated by vari-
ous features of active chromatin, including transcription27, histone 

Table 1 | Characteristics of NSV and ART-suppressed control 
participant cohorts

Characteristic NSV (n = 8) Control 
for HIV-
1-specific 
CD8+ T cell 
(n = 7)

Control 
from ACTG 
(n = 11)

Sex, number (%) Male 7 (88) 5 (71) 6 (42)

Age (years)  
(median [IQRa])

60 [55, 61] 62 [52, 68] 45 [40, 50]

Race/ethnicity (%)

African American 2 (25) 2 (29) 3 (27)

Native American 1 (12) 0 0

Caucasian 4 (50) 5 (71) 7 (63)

Hispanic 1 (12) 0 1 (10)

Years on ART 
(median [IQR])

10 [7, 14] 12 [10, 13] 6 [5, 7]

Years with NSVb 
(median [IQR])

4 [3, 9] NAd NAd

Years with 
suppression 
(median [IQR])

2 [1, 7] 12 [10, 13] 6 [5, 7]

Viral load 
copies ml−1  
(median [IQR])

143 [87, 536] BLDe BLDe

CD4 count cells µl−1 
(median [IQR])

798  
[581, 1,008]

793  
[617, 949]

806  
[713, 1,208]

aIQR, interquartile range. bNSV, non-suppressible HIV-1 residual viremia. cVirologic 
suppression before the NSV. dNA, not applicable. eBLD, below level of detection  
(HIV-1 plasma viral below limit of detection).
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blood mononuclear cell (PBMC) proviral reservoirs, respectively 
(Extended Data Figs. 2b,c).

We categorized proviruses as producers if they matched a 
plasma sequence and as non-producers if they did not. There was a 
wide range of producer proviruses within the reservoir. For LV2, the 
PBMC proviral reservoir was largely composed of one large producer 
clone representing 98% of intact proviruses, which matched the large 
plasma NSV clone (Fig. 2a). In contrast, LV3 had the smallest producer 
reservoir size, representing 3.5% of total intact sequences. These 
results demonstrate that, while these individuals share a common 

NSV phenotype, their proviral landscape can be highly heterogenous 
(Extended Data Fig. 2b,c).

We next compared the size of the intact and defective reservoir 
sizes between the participants with NSV and a control group of ten 
ART-suppressed participants (Supplementary Table 2). Participants 
with NSV had a numerically larger total and significantly larger intact 
PBMC proviral reservoir (NSV versus ART-suppressed: median total 
proviral genomes 34 versus 18 proviruses per million cells, P = 0.08; and 
median intact proviral genomes 4.3 versus 0.1 proviruses per million 
cells, P = 0.001). Specifically, the size of the producer proviral reservoir 
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Fig. 1 | Example participant with non-suppressible viremia (LV1). a, Viral loads 
and CD4+ T cell count from the time of virologic suppression. Downward blue and 
orange arrows indicate timing of drug resistance and plasma drug level testing, 
respectively. Sampling times for viral genetic analyses are in black arrows. 
Antiretroviral resistance mutations from both clinical testing and the largest 
plasma clone from single-genome sequencing are shown in the table insert. The 
“(C)” denotes a clinical resistance testing result. b, Neighbor joining trees of 
proviral and plasma pol-env sequences in blue and red, respectively. Producers 

defined as proviruses with exact matches to plasma HIV-1 RNA sequences.  
Non-producers are proviruses that do not match any plasma HIV-1 RNA 
sequences. Shape indicates sampling time point, corresponding to black arrows 
in a. RPV, rilpivirine; TDF, tenofovir disoproxil fumarate; FTC, emtricitabine; 
ATV/r, atazanavir/ritonavir; TAF, tenofovir alafenamide; DTG, dolutegravir; 
DRV/r, darunavir/ritonavir; NRTI, nucleoside reverse transcriptase inhibitors; 
NNRTI, non-nucleoside reverse transcriptase inhibitors; IN, integrase; PI, 
protease inhibitor.
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was significantly larger in the participants with NSV than either the 
non-producer intact proviral reservoir in these participants or the 
intact proviral reservoir in the ART-suppressed participants (Fig. 2b). In 
addition, the participants with NSV had a smaller number of proviruses 
with large deletions (median 2.6 versus 10.7 proviruses per million cells, 
P = 0.006). These results suggest that an enlarged producer reservoir 
size could be a contributing factor to NSV.

Integration site and epigenetic signatures of 
producers
The location and chromatin landscape of HIV-1 proviral integration 
sites can modulate the extent of proviral transcriptional activity37,38. 
We accordingly evaluated whether certain integration site features 
differentiated the producer, non-producer and defective proviruses. 
Using the Matched Integration Site and Proviral Sequencing (MIP-seq) 
protocol39, we identified host chromosomal integration sites for 11 
producer, 21 intact non-producer and 44 defective proviruses across 
all participants with NSV (we were unable to identify an integration site 
for the LV3 producer clone). Integration sites were identified across all 
autosomal and sex chromosomes with the exception of chromosome 

21 (Fig. 3a). Compared with non-producer and defective proviruses, 
producer proviral integration sites were enriched in chromosome 
19. Twenty-seven percent (3/11) of producer proviruses were located 
in chromosome 19 compared with none of the 21 non-producer and 
44 defective proviruses (producer versus non-producer P = 0.03 and 
producer versus defective P = 0.006, Fig. 3b).

We also observed significant enrichment of producer proviruses 
in proximity to two epigenetic markers. Using chromatin immuno-
precipitation followed by sequencing (ChIP–seq) data from primary 
CD4+ T cells published on the ROADMAP database40, we detected 
significantly higher ChIP–seq peak numbers for the H3K36me3 and 
H3K9me3 histone marks in proximity to producer integration sites 
compared with either non-producer or defective integration sites  
(Fig. 3c). We calculated the level of plasma viral load contributed by the 
producer provirus, which we designate as the plasma clone viral load. 
We observed a significant positive correlation between the number 
of H3K36me3 ChIP–seq reads in proximity to the producer proviruses 
integration sites and the plasma clone viral load (Spearman r = 0.83, 
P = 0.001, Fig. 3d). Proximity to H3K36me3 has been linked to proviral 
gene expression38,41, suggesting that producer proviruses are enriched 
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Fig. 2 | Sequencing overview of the non-suppressible viremia cohort.  
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used for comparisons.
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near transcriptionally active regions of the chromosome and that 
producer proviruses could potentially leverage cellular transcriptional 
machinery for proviral expression and virion production37. In addition, 
a higher number of proximal ChIP–seq peak numbers for two other acti-
vating histone marks (H3K27ac and H3K4me1) were linked to greater 
expression of host genes containing integrated proviruses (Extended 
Data Fig. 3a), although these histone marks were not enriched near 
producer proviruses.

There were a number of chromosomal features that were not 
associated with the producer cell proviral phenotype. Distance to 
transcriptional start sites (TSSs) was statistically indistinguishable 
between producer, non-producer and defective proviruses, regard-
less of the orientation of the host gene and provirus (Extended Data  
Fig. 3b–d). We also did not detect any significant differences between 
producer, non-producer and defective proviral classes and their 

distance to heterochromatic centromeres or the fraction of integration 
into transcriptionally active speckle-associated domains (Extended 
Data Fig. 3e,f). Finally, using RNA-seq analysis from CD4+ T cells of 
participants with NSV, we detected no significant differences in host 
gene transcript levels between producer, non-producer and defective 
proviruses regardless of the integration orientation of the provirus with 
regard to the host gene (Extended Data Fig. 3g,h).

Distinct cell survival and interferon signaling  
in NSV
Cell survival signaling has been linked to HIV-1 persistence, especially 
in latently infected CD4+ T cells42,43. To understand the association 
between cell signaling and NSV, we compared the CD4+ T cell tran-
scriptomic features between the NSV group (N = 8) and a subgroup of 
the ART-suppressed individuals (N = 5) with available RNA sequencing 
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plot showing the location of each integration site across human chromosomes. b, 
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(RNA-seq) data44,45. Compared with the ART-suppressed individuals, 
participants with NSV had 265 upregulated genes and 427 downregu-
lated genes in total CD4+ T cells (adjusted P value (Padj) <0.1, Fig. 4a). 
Among these differentially expressed genes (DEGs), Gene Set Enrich-
ment Analysis (GSEA) revealed enrichment of pathways related to 
HIV-1 infection, HIV-1 life cycle and transcription in the NSV group 
(Fig. 4b). CD4+ T cells from the NSV group exhibited enrichment in 
oxidative phosphorylation and apoptosis-related signals (Fig. 4b 
top and Extended Data Fig. 4a). Specifically, CD4+ T cells from par-
ticipants with NSV appeared to be primed for survival via downregu-
lation of pro-apoptotic genes and upregulation of genes associated 
with anti-apoptotic pathways, including proteosome-related genes  
(for example, PSMB1, PSMB2 and PSMD14), ubiquitination-related 
genes, and oncogenes such as PIK3CA and PIK3R1 (Fig. 4c,d)46–49.

Transcriptomic analysis also highlighted differences in the immune 
responses between NSV and ART-suppressed individuals. Participants 
with NSV demonstrated upregulation of immunosuppression-related 
genes in total CD4+ T cells, including CTLA4 and FOXP3 (Fig. 4a), point-
ing to an enrichment of the RUNX1-related pathway, which is associated 
with attenuation in antiviral and interferon (IFN) signaling through 
FOXP3 binding50,51. In fact, both IFN-α/β and IFN-γ signaling were 
enriched in ART-suppressed individuals (Fig. 4b bottom and Extended 
Data Fig. 4b,c). IFN signaling plays a pivotal role in HIV-1 pathogenesis 
by inducing viral restriction factors, causing depletion of CD4+ T cells, 
and regulating systemic immune activation52. These results may point 
towards potential defects in immune-mediated control of a highly 
active HIV-1 reservoir as a contributing factor for NSV.

Absence of immune activation and evidence of 
HLA escape in NSV
We next assessed the impact of NSV on inflammation and immune 
activation. Levels of 12 plasma soluble markers of inflammation were 
compared between participants with NSV and ART-suppressed partici-
pants. Participants with NSV demonstrated lower IL-10 and elevated 
IL-6, but no significant differences in levels of C-reactive protein, sCD14 
and sCD163 compared with ART-suppressed individuals (Extended 
Data Fig. 5). Of note, the older age of the participants with NSV could 
be playing a role in the higher IL-6 levels found in the participants with 
NSV compared with the ART-suppressed participants53. Levels of acti-
vated HLA-DR+CD38+ CD4+ and CD8+ T cells were compared among 
participants with NSV, ART-suppressed participants and a cohort of 
historical VCs, who can achieve immune-mediated control of HIV-1 
replication without ART54. Despite similar levels of viremia to the VCs 
(Extended Data Fig. 6a), participants with NSV had substantially lower 
levels of CD8+ T cell activation compared with VCs and comparable 
levels compared with ART-suppressed individuals (Fig. 5a). There were 
no differences in the intensity and frequency of CD4-expressing cells 
between groups (Extended Data Fig. 6b,c).

HIV-specific CD8+ T cells, which recognize viral peptides pre-
sented in complex with HLA Class-I (HLA-A, HLA-B, and HLA-C), are 
thought to be one of the key mediators of viral control55,56. Among 
NSV, ART-suppressed and VC participants, the magnitude of effector 
HLA-restricted HIV-specific T cell activity and proliferative HIV-specific 
CD8+ T cells aligned with overall CD8+ T cell activation. VCs had sig-
nificantly greater HIV-specific CD8+ T cell responses by IFN-γ ELISpot 
and T cell proliferation assays in comparison with both participants 
with NSV and ART-suppressed participants (Fig. 5b,c). In VCs, elevated 
HIV-specific CD8+ T cell responses were detected against HIV-1 Gag, 
Pol, Env and Nef peptides, with the most robust responses towards 
Gag (Extended Data Fig. 7). Of note, the relatively muted HIV-specific 
CD8+ T cell response in NSV was paired with a modestly higher aver-
age number of HLA-adapted (escape) mutations57 in producer pro-
viruses compared with non-producer (P = 0.04) and a substantially 
higher escape burden compared with defective proviruses adjusted 
for proviral length (P = 0.001, Fig. 5d). After normalizing for the size of 

each HIV-1 gene, nef showed significantly higher numbers of adapted 
and possible adapted mutations compared with other HIV-1 genes  
(Fig. 5e and Extended Data Fig. 8). Adapted and possible adapted muta-
tions in HIV-1 genomes in both producers and non-producers highly 
correlated with CD8+ T cell IFN-γ release but not with proliferation 
(Fig. 5f,g), suggesting a relationship between effector HIV-specific 
CD8+ T cell responses with relatively decreased functionality (that is, 
proliferation) and subsequent emergence of mutations within proviral 
clones. Specifically, the number of nef adapted and possible adapted 
mutations in producer proviruses was strongly correlated with CD8+ 
T cell IFN-γ release in NSV (r = 0.94, P = 0.02, Fig. 5f,h). Adapted and 
possible adapted mutations in pol in producer proviruses also sig-
nificantly correlated with total CD8+ T cell activity (r = 0.84, P = 0.04, 
Fig. 5i) and may represent immune-driven viral escape mutations that 
accumulated before ART initiation.

A subset of producers has deletions in the 5′ 
leader region
Our sequencing revealed that NSV is largely composed of one or two 
clonal populations that remain stable over time, which is consistent 
with high-level viral production from a large, clonally expanded popu-
lation of HIV-1-infected cells as the primary driver of NSV, rather than 
ongoing viral replication on ART. Since NSV need not be composed 
of infectious virus, we evaluated producer proviruses for potential 
replication defects, including deletions in the 5′ PSI packaging ele-
ment58. In 38% (3/8) of participants with NSV, we observed that producer 
proviruses harbored deletions in the 5′ end of HIV-1 genome (Extended 
Data Fig. 9, black boxes). These deletions, which encompassed 22, 15 
and 41 nucleotides in participants LV4, LV7 and LV8, respectively, all 
occurred within SL1 and SL2 elements, ending at the same location 
within the splice donor site. Plasma HIV-1 RNA sequencing of the 5′ 
leader/gag region of HIV-1 was performed to confirm the presence 
of these 5′ defects within the plasma HIV-1 RNA sequences. To evalu-
ate whether these proviruses were infectious, viral outgrowth assays 
(VOAs) were performed using a transwell system with participant CD4+ 
T cells (LV4, LV7 and LV8; LV2, LV5 and LV9 served as controls) in the 
bottom chamber and MOLT-4/CCR5 cells in the upper chamber. HIV-1 
DNA from the MOLT-4 cells was extracted and subjected to MIP-seq 
analysis. None of the proviruses with 5′ deletions was isolated in the 
VOA. Producer provirus was isolated from the VOA for LV9 (Fig. 2a and 
Extended Data Fig. 10). Non-producer proviruses were isolated from 
the VOA for LV2, LV5 and LV8 (Fig. 2a)58.

Discussion
In this study, we have conducted a comprehensive assessment of NSV 
in eight participants and have provided insight into ART-independent 
factors implicated in HIV-1 suppression and persistence. Our results 
indicate that suboptimal ART adherence and drug resistance do not 
appear to be the drivers of non-suppressible viremia. In these par-
ticipants, our data suggest that NSV is driven instead by the critical 
intersection of viral and host immune factors. Specifically, the NSV 
phenotype was highlighted by the presence of large, clonally expanded 
reservoirs of proviruses frequently harboring immune escape muta-
tions (and/or defects in the 5′ leader region), integrated in transcription-
ally permissive chromosomal regions, within CD4+ T cells primed for 
survival, and in an environment of muted HIV-specific T cell responses 
(Supplementary Fig. 3).

In one of the first in-depth reservoir studies of NSVs, Halvas et al. 
reported that NSV is composed largely of identical populations of 
plasma viruses that arise from the expansion of HIV-infected CD4+ 
T cell clones, which they termed repliclones1. However, most prior 
studies sequenced relatively short fragments of viral RNA, which can 
overestimate the clonality of plasma sequences. Our plasma HIV-1 
RNA sequencing assay was combined with an ultrasensitive RNA 
extraction process for 6.7 kb pol-env RNA-seq (Extended Data Fig. 10).  
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These results confirm that, in our cohort, NSV is composed primarily 
of one to two large plasma viral clones that composed >70% of plasma 
viruses. The role of these viral clones as the primary driver of NSV was 
confirmed across multiple longitudinal time points, which failed to 
reveal evidence of plasma viral sequence changes and evolution. For 
all of the participants with NSV, we were able to identify exact proviral 
sequence matches for the large plasma clones. We found that the size 
of the producer proviral reservoir was significantly larger than either 
the size of the non-producer proviruses in participants with NSV or 
intact proviruses in ART-suppressed participants, although admittedly 
with a broad distribution in size of the producer proviral reservoir. 
The large size of these producer proviral reservoirs and their ability 
to maintain NSV over years highlight the relative stability of this reser-
voir. These results and the presence of NSV over many years suggests 
an intrinsic ability of these HIV-infected cells to maintain prolonged 
survival and/or proliferate. Prior studies have reported that CD4+ 
T cells modulating key pro- and anti-apoptotic pathways can maintain 
survival of HIV-infected cells, drive clonal expansion and guard against 
CTLs43,59. Compared with ART-suppressed participants, CD4+ T cells 
in participants with NSV demonstrated transcriptional upregulation 

of anti-apoptotic pathways and downregulation of pro-apoptotic 
pathways. While transcriptional analysis was not isolated to producer 
cells alone, these results suggest that the CD4+ T cell environment in 
participants with NSV is primed for survival. Lymphoid clonal hemat-
opoiesis (L-CH) refers to the expansion of hematopoietic stem cell 
clones in relation to age that is triggered by the acquisition of specific 
point mutations or chromosomal alterations in somatic cells. Recent 
studies have revealed the presence of L-CH in conditions such as auto-
immunity or immunodeficiency, and the role of L-CH in NSV should be 
studied in the future60.

Using the MIP-seq assay39, we were able to identify the location of 
HIV-1 integration sites in host chromosomes for 11 producer, 21 intact 
non-producer and 44 defective proviruses across participants with NSV. 
HIV-1 integration is known to favor active chromatin, and proximity to 
activating epigenetic marks can modulate proviral gene expression 
and hence the fate of the resident provirus and infected cell61,62. We and 
others have reported that with prolonged ART, intact proviruses are 
more likely to be found in non-genic regions, in opposite orientation 
from the host gene and more distant from accessible chromosomal 
regions that highlight the selection of intact proviruses integrated into 
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regions of deep latency63. In participants with NSV, we found enrich-
ment of integration in chromosome 19, which is distinctively enriched 
for gene density64,65. We also demonstrated that producer proviruses 
were located in regions enriched in certain epigenetic characteristics, 

including a greater number of H3K36me3 histone peaks, which are 
associated with a transcriptionally permissive chromosomal regions 
and elevated proviral expression38. A higher number of H3K36me3 
peaks surrounding the producer provirus was also strongly associated 
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Fig. 5 | HIV-specific CD8+ T cell response and HLA class I escape mutations.  
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T cell ELISPOT responses in NSV, ART-suppressed, and viremic controller (VC) 
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with higher plasma viral load composed of that clone. These results 
show that the location of HIV-1 proviral integration in the host genome 
is a determinant of its eventual fate and align with emerging evidence 
that the processes of entering and exiting proviral transcriptional 
latency are influenced by epigenetic mechanisms, making them poten-
tially susceptible to pharmacological interventions.

We found that the persistence of non-suppressible viremia 
occurred in an environment of relatively muted inflammation and 
immune activation, featuring the downregulation of IFN response 
genes, generally low levels of soluble inflammatory markers, and no 
significant increase in HIV-specific CD8+ T cell responses compared 
with ART-suppressed individuals. IFN plays a vital role in the innate host 
antiviral response and contributes to the suppression of HIV-1 viremia66. 
Compared with ART-suppressed participants, participants with NSV 
significantly downregulated transcription of multiple genes involved in 
the IFN-response pathway by bulk CD4 transcriptomic analysis. These 
include IFN regulatory factors 3 and 7 (IRF3 and IRF7), OAS1 and other 
genes known to be part of critical circuits for stimulating host antiviral 
immune responses67,68. While transcriptomic analysis was performed 
only on bulk CD4 cells, the results do provide some intriguing signals 
related to latency reversal and cellular survival. For example, BIRC2 is 
an inhibitor of apoptosis protein (IAP), which suppresses HIV-1 tran-
scription and depletion of BIRC2 can lead to HIV-1 latency reversal69. 
Participants with NSV downregulated the expression of TNFRSF14, the 
receptor for the LIGHT/TNFSF14 ligand, which binds BIRC2 (ref. 70). 
Inhibitors of LIGHT/TNFSF14 are being developed for cancer immuno-
therapy71 and could be assessed for HIV-1 latency reversal potential. In 
addition, participants with NSV were found to upregulate expression 
of PIK3R1 and PIK3CA (among other anti-apoptotic genes), which help 
encode phosphatidylinositol 3-kinase, an enzyme that promotes cel-
lular survival through activation of Akt. Whether the use of phosphati-
dylinositol 3-kinase inhibitors could contribute to clearing HIV-infected 
cells should also be explored72,73.

Heightened HIV-specific CD8+ T cell responses occur with HIV-1 
viremia, which is critical to suppress the HIV-1 reservoir74. Thus, we 
were surprised to find a relatively muted CD8+ T cell response, with 
no significant differences noted in HLA-restricted HIV-specific CD8+ 
T cell activity and proliferation between the individuals with NSV and 
ART-suppressed individuals, and significantly lower levels than seen in 
VCs with similar levels of viremia. Together, the transcriptomic, soluble 
inflammatory and T cell data demonstrated that NSV appears to be 
uncoupled with immune activation. There are several possible expla-
nations for the relatively low levels of HIV-specific T cell responses. 
First, producer proviruses harbored higher frequencies of adaptive 
HLA escape mutations, which may explain the suboptimal induction of 
HIV-specific CD8+ T cell activity due to a loss of antigen recognition75. Of 
note, there was an enrichment of HLA-escape mutations in nef, which 
may be particularly immunogenic as previous studies have reported 
that the strength of the Nef-specific T cell activity is linked with the 
size of the HIV-1 reservoir76. Another potential mechanism of immune 
escape may be the contribution of defective virions to NSV. In 38% 
(three of eight) of our individuals with NSV, we detected deletions in the 
5′ leader sequence of the HIV-1 genome. None of these sequences was 
recovered using the VOA, suggesting these proviruses may be replica-
tion defective. The 5′-untranslated leader contains several structural 
motifs that are involved in multiple steps of HIV-1 replication. The 
deletions are present in the psi (Ψ) element, which is a highly structured 
RNA sequence with four hairpin stem loops and a strong affinity for 
the nucleocapsid domain of the viral Gag protein. Genome packaging 
during virus assembly and reverse transcription during the subsequent 
round of infection are some known functions of the 5′ leader region77,78. 
A recent study by White et al. described four participants with NSV with 
apparent defects in the 5′ leader sequence58. These defects generally 
spanned the major splice donor site and resulted in the creation of non-
functional virions lacking the envelope glycoprotein. Interestingly, the 

5′ leader sequence deletions in our participants with NSV spanned the 
same region and, in fact, LV4 shares the same 22-base deletion that was 
detected in three participants by White et al. The detection of 5′ leader 
defects at high frequencies across multiple cohorts suggests a selec-
tive advantage of these proviruses in conferring the NSV phenotype, 
potentially by maintaining a plasma viral load in the absence of HIV-1 
replication and/or the ability of Env-deleted virions to escape from 
host immune surveillance79. It has also become increasingly clear that 
cellular metabolism represents a crucial regulator of T cell activation 
and response. Additional studies are also needed to assess the role of 
metabolic programs and pathways, such as altered glutaminolysis and 
glycolysis, in suppressing T cell function in participants with NSV80.

In addition to the previously noted limitations, the small size of 
the NSV cohort analyzed in this study is a key limitation. Also, we esti-
mated proviral reservoir size by near-full-length proviral sequencing. 
This could lead to some underestimation of the actual reservoir size, 
although other methods for reservoir quantification (for example, 
intact proviral DNA assay) may overestimate the size81. Future studies 
will need to investigate the size of producer proviruses within tissue 
reservoirs. We found that the peripheral blood reservoir of HIV-infected 
CD4+ T cells contributing to NSV can differ dramatically between par-
ticipants with NSV. It is possible that NSV-generating CD4+ T cells are 
also distributed within anatomical tissue compartments82,83, especially 
for those participants with NSV with a relatively small producer pro-
viral reservoir size in the peripheral blood. Prior studies have shown 
that Gag- or CMV-specific antigens can drive the expansion of certain 
HIV-infected cellular clones32. Additional studies are needed to delin-
eate which antigens might be playing a role in the expansion of the 
producer proviruses. Neutralizing antibody responses can also sup-
press viremia84 and evaluation of the humoral immune responses are 
indicated, although prior studies suggest that some NSV is resistant 
to autologous neutralizing antibodies85. The lack of viral evolution 
and ongoing viral replication on longitudinal phylogenetic analysis 
may explain why ART intensification has not led to virologic efficacy 
in those with NSV. It is unknown whether newer ARVs, including drugs 
with potential immunomodulatory properties (for example, fostem-
savir86) could provide additional virologic benefit.

In this study, we identified critical host and viral mediators of 
NSV that represent potential targets to disrupt HIV-1 persistence 
and promote viral silencing. Importantly, ultrasensitive HIV-1 viral 
load assays can detect residual low levels of HIV-1 viremia in the vast 
majority of PWH, even on apparently suppressive ART87. Previous 
studies have reported that such residual viremia is largely composed 
of drug-sensitive virus16 and relatively homogeneous viral popula-
tions18. Thus, we believe it is likely that the mechanisms behind NSV 
that we describe here are present to some extent in most, if not all, of 
PWH. Achieving an in-depth understanding of the mechanisms behind 
NSV may provide insight on strategies for HIV-1 reservoir eradication 
applicable to all PWH.
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Methods
Participants
In an observational study, we enrolled 8 ART-treated participants 
with three or more HIV-1 RNA levels between 40 and 1,000 cop-
ies ml−1 over 24 months of whom 7 (88%) were men and compared 
them with a historic cohort of 11 ART-suppressed participants, of 
whom 5 (71%) were men, with HIV-1 with similar demographic and 
CD4 counts. Sex and/or gender of participants was determined on 
the basis of self-report. A participant with non-suppressible viremia 
enrolled in the HIV Eradication and Latency (HEAL) cohort, a biore-
pository of Brigham and Women’s Hospital, was included as a part of 
eight NSVs. The NSV samples were taken from different time points, 
enabling us to study these participants longitudinally (Fig. 1 and 
Extended Data Fig. 1). The ART-suppressed comparators included 
11 participants from the AIDS Clinical Trials Group (ACTG) and 7 
participants from the Ragon Institute of Massachusetts General 
Hospital, the Massachusetts Institute of Technology and Harvard. 
Both ART-suppressed comparator groups were well matched with 
the participants with NSV by CD4 count. A cohort of VCs not on 
ART with similar viral loads to the participants with NSV was also 
included for the T cell analysis. All study participants provided writ-
ten informed consent. The study was approved by the Mass General 
Brigham Institutional Review Board.

ARV drug level testing
For plasma ARV testing, samples were sent to the infectious disease 
pharmacokinetics lab at the University of Florida. Testing was per-
formed for darunavir and dolutegravir by liquid chromatography with 
tandem mass spectrometry. For DBS ARV testing, 25 ml of whole blood 
were spotted five times onto Whatman 903 protein saver cards, as pre-
viously described21,82. After spotting, cards were allowed to dry at room 
temperature for at least 3 h (as long as overnight), after which they 
were stored at −80 °C until analyzed. TFV-DP and FTC-TP were quanti-
fied from two 7-mm punches extracted with 2 ml of methanol:water 
to create a lysed cellular matrix using a previously validated method 
that was adapted and validated for tenofovir alafenamide-containing 
regimens. The assay was linear and ranged from 25 to 6,000 fmol per 
sample for TFV-DP and from 0.1 to 200 pmol per sample for FTC-TP21,88.

DNA isolation and HIV reservoir quantification
DNA extractions were carried out from PBMCs using the QIAamp DNA 
Micro Kit (cat. no. 56304), and the quantification of DNA was performed 
with Nanodrop (Applied Biosystems, Thermo Fisher). To estimate the 
size of the reservoir, we analyzed near-full-length proviral sequences 
as described below.

Near-full-length proviral sequencing, sequence alignments, 
quality control and neighbor joining analyses
Extracted DNA was endpoint-diluted and subjected to near full-length 
sequencing (NFL-seq), as previously described63. We classified our 
sequences into intact and different classes of defective proviruses 
(for example, 5′-defect, deletion, hypermutation and inversion) using 
a published proviral intactness pipeline88. Briefly, after aligning to 
HXB2, we called our sequences as large deleterious deletions if they 
had a <8,000-bp amplicon size, out-of-frame indels, premature/lethal 
stop codons, internal inversions or packaging signal deletions (≥15 bp). 
The Los Alamos National Laboratory HIV Sequence Database Hyper-
mut 2 program was used to identify the existence or nonexistence 
of hypermutations linked to APOBEC-3G/3F. Sequences of the virus 
that did not have any of the mutations listed earlier were categorized 
as ‘genome-intact’ sequences. Using MAFFT v7.2.0, we aligned the 
sequences and utilized MEGA 6 to deduce neighbor joining trees. We 
called those proviruses with an exact match with plasma sequences 
‘producers’ and intact proviruses without matching plasma sequences 
‘non-producers’.

Plasma HIV-1 RNA sequencing
We sequenced plasma HIV RNA as previously described.89 Extracted 
RNA was diluted to single viral genome levels to meet the criteria of 
single-genome sequencing of having no more than one template in 
each well, theoretically no more than 25% of wells being positive for 
HIV. Primers were designed to amplify pol-env, a 6.7-kb region (Sup-
plementary Data 1). The amplification reaction was performed using 
0.5 µl primers (10 µmol), 1 µl (10 mmol) MgSO4, 1 µl (10 mmol) dNTPs 
and 1 U Platinum Taq Polymerase (Invitrogen) in 25 µl total volume. 
Polymerase chain reaction conditions consisted of a denaturation 
step at 94 °C for 2 min, followed by 30 cycles of 30 s at 94 °C, 30 s at 
56 °C, 90 s at 68 °C and 10 min at 68 °C. Products underwent Illumina 
barcoded library construction and MiSeq sequencing. Amplicons were 
assembled using the UltraCycler v1.0 automated de novo sequence 
assembly to generate a continuous fragment. Plasma sequences that 
were within one to two nucleotides of the near-full-length proviral 
sequence was considered part of the clonal cluster. We counted the 
total number of plasma sequences in each clone and divided them by all 
plasma sequences that we had generated. Then we multiplied the ratio 
with the plasma viral load to determine the contribution of each clone 
for plasma viral load, which we termed the plasma clone viral load.

For each sequence, the GSS versus the participants’ ART regimen 
was calculated using the Stanford HIV database drug resistance scor-
ing system. The Stanford HIV database provides a weighted penalty 
score for the effect of every resistance mutation and antiretroviral 
medication with 0 if there is no expected effect to 60 for high-level 
resistance. For each sequence, the estimated level of resistance for 
each antiretroviral medication (ARV) was determined by adding all of 
the penalty scores for each of the drug resistance mutations present. 
The GSS of each ARV was defined as the following: 1 (Stanford penalty 
score 0–9), 0.75 (Stanford penalty score 10–14), 0.5 (Stanford penalty 
score 15–29), 0.25 (Stanford penalty score 30–59) and 0 (Stanford 
penalty score ≥60). The GSS for the sequence was the sum of the GSS 
for each ARV as part of the participant’s regimen.

Total RNA transcripts sequencing
CD4+ T cells were selected from cryopreserved PBMCs using EasySep 
Human CD4+ T Cell Enrichment Kit (STEMCELL Technologies). RNA 
was extracted from selected CD4+ T cells with the AllPrep DNA/RNA 
kit (Qiagen) with subsequent ribosomal RNA depletion RNA reverse 
transcribed to complementary DNA library and sequenced by NovaSeq 
(Illumina). Sequencing results were processed with the VIPER pipeline 
for alignment, counting and quality control90. DEG analysis was per-
formed with DESeq2 package89 and GSEA with fgsea package using 
the adaptive multilevel splitting Monte Carlo approach (n = 10,000 
for simple fgsea in preliminary estimation of P values)91.

Integration site identification and epigenetics
We characterized single proviral genomes along with their matched 
genomic integration sites by MIP-seq39. Briefly, we initiated 
whole-genome amplification by performing multiple displacement 
amplification with phi29 polymerase using the QIAGEN REPLI-g Single 
Cell Kit, following the manufacturer’s protocol. Afterward, we divided 
DNA from each sample and carried out proviral sequencing and integra-
tion site analysis. We utilized integration site loop amplification, which 
has been previously described, to obtain the integration sites associ-
ated with each viral sequence92. One modification that we made to this 
assay is targeting both the 5′ and 3′ ends of HIV to assess the integration 
site on both ends and eliminate any potential bias that may arise from 
analyzing only one end of HIV. To determine the exact location of HIV in 
the host gene, we used an online tool for trimming integration sites93,94. 
We analyzed our integration sites for various histone marks by utiliz-
ing ChIP–seq datasets from primary CD4+ T cells that were publicly 
available on the ROADMAP website40. The NIH Roadmap Epigenomics 
Mapping Consortium produces a public resource of human epigenomic 
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data to catalyze basic biology and disease-oriented research (http://
www.roadmapepigenomics.org/). We calculated the total number of 
peaks of histone marks in a 10-kb window from the flanking sides of 
the integration site and regarded it as the total peak number. To deter-
mine the distance between the IS and the nearest TSS, we employed 
‘nearestTSS: Find Nearest Transcriptional Start Site’, which is a tool 
developed in included in the edgeR package95.

Inflammatory soluble marker levels
Cryopreserved plasma samples were thawed and analyzed in batch 
to assess inflammatory cytokines. Assays were run on 96-well plates. 
Duplicates were performed for 25% of the samples that were run on 
each plate. Mesoscale Discovery single and multiplex assays were 
performed according to instructions provided in kits for assess-
ment of sCD14 (F21T1-2), sCD163 (F21J4-3), TNF-RI (R210V-3), TNF-RII 
(F21ZS-3), IFN-γ, IL-6, IL-10, IP-10, C-reactive protein (K151A9H-1) and 
TGF-β1-3 (K15241K-1). D-dimer levels were measured with a standard 
enzyme-linked immunosorbent assay (Diagnostica Stago S.A.S.). 
The Mesoscale assays were analyzed with a MESO QuickPlex SQ 
120MM Reader.

T cell activation phenotyping and assessment of surface CD4+ 
expression
PBMCs were thawed and stained with Live/Dead Violet (Thermo Fisher, 
1:1,000), PE-Cy7-CD3 (clone SK7, BioLegend, 1:100), BV711-anti-CD4 
(clone RPA-T4, BioLegend, 1:100), APC-anti-CD8 (clone SK1, BioLegend, 
1:100), Alexa Fluor 700-anti-CD25 (clone M-A251, BioLegend, 1:50), 
BV650-anti-CD38 (clone HB-7, BioLegend, 1:50), FITC-anti-CD69 (FN50, 
BioLegend, 1:50), BV785-anti-HLA-DR (clone L243, BioLegend, 1:50) 
and PE/Dazzle 594-anti-PD-1 (clone EH12.2H7, BioLegend, 1:100). Cells 
were washed and fixed in 2% paraformaldehyde before flow cytometric 
analysis on a BD LSR Fortessa (BD Biosciences). CD4 surface expression 
was determined by assessment of CD4 mean fluorescence intensity.

Assessment of HIV-specific CD8+ T cell reactivity
PBMCs were resuspended at 1 × 106 ml−1 in RPMI supplemented with 
10% fetal bovine serum (R10) and plated 200 µl per well in Immobilon-P 
96-well microtiter plates (Millipore) precoated with 2 µg ml−1 anti-IFN-γ 
(clone DK1, Mabtech). Individual HLA-restricted HIV peptides from the 
optimal A-list96 matched to each subject’s HLA genotype were added 
at 1 µg ml−1 and incubated at 37 °C overnight. Negative control wells 
did not receive peptide and positive control wells were treated with 
1 µg ml−1 anti-CD3 (clone OKT3, BioLegend) and 1 µg ml−1 anti-CD28 
(clone CD28.8, BioLegend) antibodies. ELISPOT assay was performed 
using manufacturer’s protocol with anti-IFN-γ (clone 1-DK1, Mabtech) 
capture, biotinylated anti-IFN-γ (clone B6-1, Mabtech) detection, 
Streptavidin-ALP (Mabtech) and AP Conjugated Substrate (Bio-Rad) 
followed by disinfection with 0.05% Tween-20 (Thermo Fisher) and 
analysis using S6 Macro Analyzer (CTL Analyzers). Responses greater 
than ten spots per well and 3-fold above negative controls were scored 
as positive97,96.

Assessment of HIV-specific CD8+ T cell proliferation
PBMCs were stained at 37 °C for 20 min with 0.5 µM CellTrace car-
boxyfluorescein succinimidyl ester (CFSE) (Thermo Fisher) as per 
manufacturer’s protocol at 1 × 106 cells ml−1. Staining was quenched 
with fetal bovine serum (Sigma), and cells were washed twice with 
R10, resuspended at 1 × 106 ml−1 and plated 200 µl per well in 96-well 
round-bottom polystyrene plates (Corning). Individual HIV peptides 
corresponding to IFN-γ ELISPOT responses for each participant 
were added at 1 µg ml−1 and incubated at 37 °C for 6 days before 
flow cytometric assessment. Negative control wells received dime-
thyl sulfoxide (in amounts equivalent to peptide containing wells), 
but no peptide. Positive control wells received 1 µg ml−1 anti-CD3 
(clone OKT3, BioLegend) and anti-CD28 (clone CD28.8, BioLegend) 

antibodies. On day 6, cells were stained with Live/Dead Violet 
(Thermo Fisher), PE/Cy7-anti-human CD3 (clone SK7, BioLegend) 
and APC-anti-human CD8 (clone SK1, BioLegend) and then analyzed 
by flow cytometry (Supplementary Fig. 4). The frequency of prolifer-
ating CD8+ T cells was determined by subtracting the percentage of 
CD8+ T cells in the CFSE low gate following HIV peptide stimulation 
by the highest percentage of CFSE low cells among the dimethyl 
sulfoxide negative controls.

HLA typing and HIV escape mutation data analysis
HLA-A/B/C typing was performed using sequence-specific oligonu-
cleotide probing and sequence-based typing as previously described98. 
We excised individual HIV genes from proviral sequences using Gene 
Cutter106. We then identified polymorphisms within these genes 
that are known to be associated with one or more host HLA alleles 
expressed, as defined using a published list of HLA-associated poly-
morphisms across the HIV subtype B proteome99. For the escape muta-
tion analysis, each HLA-associated viral site was categorized into one 
of three groups: (1) ‘non-adapted’ viral sites showed the specific HIV-1 
residue predicted to be susceptible to the restricting HLA, (2) ‘adapted’ 
sites showed the specific HIV-1 residue predicted to confer escape 
from the restricting HLA, and (3) ‘possibly adapted’ sites showed any 
residue other than the ‘non-adapted’ form, supporting it as a possible 
escape variant100.

Limiting dilution VOA
PBMCs from participants and donors without HIV were stimulated 
with IL-2 (100 U ml−1) and PHA (1 µg ml−1) for 72 h in R20 culture media. 
Then, we continued the stimulation with only with IL-2 in R20 cul-
ture media. VOAs were performed by using CD4+ T cells isolated from 
cryopreserved PBMCs using EasySep Human CD4+ T Cell Enrichment 
Kit (STEMCELL Technologies) from participants and healthy donors. 
Then we used MOLT-4/CCR5 cell lines and co-cultured those for more 
than 30 days, as reported previously101. We started with 0.1 × 106 
MOLT-4/CCR5 cells and 0.5 × 106 CD4+ T cells from our participants 
and healthy donor and cultured them in each well of a 24-Transwell 
plates (STEMCELL Technologies). We collected samples from super-
natant and MOLT-4/CCR5 every 3 days and refreshed the media with 
IL-2 (100 U ml−1) in R20 102,103.

Statistical analysis
We analyzed our results by using Mann–Whitney U tests (two-tailed), 
Fisher’s exact tests and Wilcoxon’s tests as appropriate, unless oth-
erwise specified. Correlations were tested by the Spearman’s rank 
test. Adjustment for multiple comparisons was made in the analysis 
of ChIP–seq histone marks and host gene transcription, RNA-seq 
and numbers of HLA escape mutations per HIV-1 gene. A P value of 
less than 0.05 was deemed significant. We adjusted for multiple 
comparisons in the analysis of ChIP–seq histone marks and host gene 
transcription, RNA-seq and the number of HLA escape mutations per 
HIV-1 gene. However, we did not make any corrections for multiple 
comparisons in the other analyses, as it was an exploratory analysis. 
We performed the statistical analysis using Prism (GraphPad v.7) 
and the statistical packages in R (R Project for Statistical Computing, 
version 4.1.0).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data and code are available by request to the authors and the AIDS 
Clinical Trials Group. Sequence data were submitted to Genbank (Bio-
Project: PRJNA973660). ROADMAP epigenomic data are available at 
http://www.roadmapepigenomics.org.
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Code availability
There were no new pipelines or packages generated in this study. CHIP–
seq and RNA-seq downstream data analyses code was deposited at 
https://github.com/yijiali89/NSV.
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Extended Data Fig. 1 | Viral load and CD4+ T cell count for seven NSV participants (Supplementary to Fig. 1). The table in each figure panel shows presence or 
absence of drug resistance mutations from both clinical testing and the largest plasma clone from single-genome sequencing. The “(C)” denotes a clinical resistance 
testing result.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | Reservoir size and composition for non-suppressible 
viremia participants (Supplementary to Fig. 2). (a) Comparison of proportion 
of the proviral and plasma HIV sequences comprised of each producer clone. 

Red dotted lines represent higher plasma clone frequency and blue dotted lines 
present higher proviral clone frequency. (b) and (c) Percentage of intact and 
defective proviral species for each NSV participant.

http://www.nature.com/naturemedicine
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Integration site features (Supplementary to Fig. 3). 
(a) Correlation between enrichment of histone marks in producer integration 
sites and transcripts per million (TPM) from CD4+ T cell bulk RNA-seq results 
of each corresponding host gene harboring a provirus. On x-axis, total peak 
numbers in ± 10 kb flanking regions of n = 11 producer, n = 21 nonproducer and 
n = 44 defective integration sites from NSV samples were compared to each 
host gene TPM in their CD4 + T cells on y-axis. Two-sided Spearman correlation 
tests were used for the comparisons. (b) The distance of integration sites in 
each class of proviruses to the nearest transcriptional start sites (TSS). (c) The 
distance between the integration site to the TSS when HIV-1 or host genes are in 
the same orientation. (d) The distance between the integration site to the TSS 
when HIV-1 or host genes are in the opposite orientation. For figures b-d, n = 11 
producer, n = 21 nonproducer and n = 44 defective integration sites from NSV 
samples were compared to each other. (e) The distance from the integration 
sites of different proviral classes to the centromere. Two-sided Kruskal-Wallis 
and Mann-Whitney U tests were used for comparisons. (f) Fraction of integration 
sites in speckle-associated domains (SPADs). Chi-squared test was used for 
comparisons. (g) Transcriptomic level of HIV host genes for producers, non-

producers and defectives. For (e)-(g), n = 11 producer, n = 21 nonproducer and 
n = 44 defective integration sites from NSV samples were compared to each 
other. (h) Transcriptomic level of host genes for producers, non-producers and 
defectives categorized by directionality to closest host genes. We compared 
the number of transcripts per million cells for the host gene of each integrated 
provirus, including categorizing by the relative direction of the provirus to the 
host gene. “+” represents human and HIV genome in the same and “- “represents 
human and HIV in the opposite orientation of their transcriptions. Total of n = 11 
producer (5 integrations site in the same and 6 in the opposite orientation), n = 21 
nonproducer (7 integrations site in the same and 14 in the opposite orientation) 
and n = 44 defective (20 integrations site in the same and 24 in the opposite 
orientation) integration sites from NSV samples were compared to each other. 
All the boxplots in this figure are in the format of the Tukey boxplot, with the 
center line indicating median, box limits indicating upper and lower quartiles 
and the whiskers indicating 1.5x interquartile range. Two-sided Kruskal-Wallis or 
Mann-Whitney U tests was used for comparisons, if not otherwise specified. For P 
values, ns, not significant.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Transcriptomic analysis of CD4 + T cells from NSV 
and ART-suppressed participants (Supplementary to Fig. 4). (a) Gene Set 
Enrichment Analysis (GSEA) plots show selected pathways that were up- or 
down-regulated in NSV vs. ART-suppressed (control) groups. Adjustments were 
made for multiple comparisons using the Benjamini-Hochberg method. (b) 

Two-sided Wilcoxon rank sum test was used to evaluate interferon (IFN)-related 
gene expression levels between NSV and control groups. Bars represent median 
values. (c) Gene network related to IFN signaling enriched in the control group 
generated by STRING analysis.

http://www.nature.com/naturemedicine
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Extended Data Fig. 5 | Soluble inflammatory markers in NSV versus ART-
suppressed participants. (a) IL-10. (b) IL-6. (c) IFN-γ, (d) TGF-β1, (e) TGF-β2, (f) 
TGF-β3, (g) TNF-RI, (h) TNF-RII, (i) CD-163, ( j) D-Dimer, (k) CRP and (l) soluble 

CD14 in NSV and ART-suppressed cohorts. Center lines indicated median levels 
and dotted lines indicated the first and third quartiles. The two-sided Mann-
Whitney U test was used for comparisons.
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Extended Data Fig. 6 | Viral load and CD4 + T cell features among NSV, ART-
suppressed, and viremic controller cohorts. (a) Viral load of participants in 
NSV, ART-suppressed and viremic controller (VC) cohorts. (b) Mean fluorescence 

intensity (MFI) values of CD4 in NSV, ART-suppressed, and VC cohorts. (c) 
Frequency of CD4 + T cells. Center lines indicated median levels and dotted lines 
indicated the first and third quartiles. Two-sided Mann-Whitney U test was used.
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Extended Data Fig. 7 | HIV-specific CD8+ T cell response among NSV, ART-
suppressed, and viremic controller cohorts. For Gag-specific CD8+ T cell 
response, we had n = 4, n = 6 and n = 8 responses for NSV, ART-suppressed 
and VC samples, respectively. For Pol-specific response, we had n = 1, n = 2 
and n = 7 responses from NSV, ART-suppressed and VC samples, respectively. 
For Env-specific response, we had n = 2, n = 3 and n = 6 responses from NSV, 

ART-suppressed and VC samples, respectively. For Nef-specific response, we 
had n = 3, n = 5 and n = 6 responses from NSV, ART-suppressed and VC samples, 
respectively. Bars represented median values and error bars indicated 95% 
confidence interval. Two-sided Kruskal-Wallis test was used to detect differences 
among three different cohorts. SFU, spot forming unit.
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Extended Data Fig. 8 | HLA class I escape mutations by different HIV-1 genes. 
Average number of adapted and possible adapted HLA escape mutations in 
producer, non-producer, and defective proviral sequences across the HIV-1 
genome (normalized for gene size) among eight participants with NSV. Center 

lines in boxplots indicated median, box limits indicated upper and lower 
quartiles and the whiskers indicated minimal and maximal values. Friedman test 
was conducted within each gene area and Nemenyi post-hoc pair-wise tests were 
performed to evaluate the difference between two different proviral groups.

http://www.nature.com/naturemedicine
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Extended Data Fig. 9 | Location of deletions in the 5’ leader sequence in three NSV participants. Deletions are shown in the black regions at the bottom. Ψ, PSI 
element; SL1, stem loop; SL2, stem loop; DIS, dimerization initiation site; MSD, major splicing donor.
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Extended Data Fig. 10 | Neighbor joining trees of LV9 trimmed either to the pol-env or pol regions. (a) Proviral and plasma sequences trimmed to the pol-env 
region. This panel is reproduced from Fig. 2a. (b) Proviral and plasma sequences trimmed on the pol region alone showing an inability to discriminate between two 
clonal populations seen with pol-env sequencing.
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