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ABSTRACT

Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily ex-
pandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell
population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual
viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8� T cells were expanded by
using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following
expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors
(P � 0.01) as well as treated progressors (P � 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and
their expanded breadths were indistinguishable among groups (P � 0.9 for Nef as determined by a Kruskal-Wallis test; P � 0.6
for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously unde-
tectable Gag-specific responses was inversely correlated with residual viral load (r � �0.6; P � 0.009). Together, these data re-
veal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level
viremia. Our studies highlight a CD8� T cell feature that would be desirable in a vaccine-induced T cell response.

IMPORTANCE

Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral ther-
apy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The
identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows
that a special subset of killer lymphocytes, known as central memory CD8� T lymphocytes, is at least partially involved in the
durable control of HIV replication. HIV controllers maintain a large proportion of Gag-specific expandable memory CD8� T
cells involved in ongoing viral suppression. These data suggest that induction of this cell subset by future HIV vaccines may be
important for narrowing possible routes of rapid escape from vaccine-induced CD8� T cell responses.

Most human immunodeficiency virus (HIV)-infected indi-
viduals have continuous viral replication and, if left un-

treated, eventually progress to AIDS (1–4). Only a very small
group of infected individuals, referred to as elite controllers (EC)
or elite suppressors, achieves spontaneous control of viral replica-
tion for prolonged periods in the absence of treatment (5–8). This
remarkable control of viral replication among elite controllers is
believed to be mediated largely by major histocompatibility com-
plex (MHC) class I-restricted CD8� T cell responses (9–13).
These individuals therefore present a unique model for under-
standing the in vivo mechanisms of T cell-mediated immune con-
trol (14).

Most studies examining the relationship between CD8� T cell
responses and viral load in elite controllers have focused on assays
that measure effector memory rather than central memory re-
sponses. Using gamma interferon (IFN-�) enzyme-linked immu-
nosorbent spot (ELISPOT) assays, the most frequent and robust
CD8� T cell responses in elite controllers are directed toward the
HIV Gag protein; particularly, p24 capsid protein targeting has
been repeatedly shown to be associated with enhanced control of
viremia in vivo (15) and in vitro (16). In contrast, preferential
targeting of the HIV envelope (Env) protein has been associated

with higher viral loads in both human and monkey studies
(17–20). Although the precise mechanisms responsible for the
enhanced antiviral function associated with Gag-specific re-
sponses are not fully understood, fitness costs associated with es-
cape mutations from CD8� T cell responses directed at the highly
conserved Gag protein have been implicated in both humans in-
fected with HIV and primates infected with simian immunodefi-
ciency virus (SIV) (21–27).

Despite extensive evidence supporting a specific role for CD8�

T cells in immune-mediated control of HIV, not all elite control-
lers exhibit readily detectable CD8� T cell responses. Measure-
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ments of CD8� T cell responses by ex vivo cytokine secretion as-
says fail to accurately measure central memory responses (18).
Consequently, the role of this cell subset in the immune-mediated
control of HIV remains ill defined. A recent analysis of HIV-spe-
cific CD8� T cells following ex vivo enrichment and after expan-
sion in culture defined the phenotype and functional features of
HIV-specific central memory CD8� T cells (28). These studies
show that in addition to the readily detectable responses, most
elite controllers harbor a wide range of low-frequency but highly
functional and readily expandable Gag-specific memory cells,
which are able to inhibit virus replication in vitro (28). However, it
is not known whether this population contributes to durable viral
suppression. Moreover, it is not known if this is a property that is
limited to responses targeting the Gag protein or whether expand-
able central memory responses to other HIV protein targets are
also involved.

In this study, we interrogated the in vivo relevance of the ex-
pandable memory population based on the premise that there are
two possibilities for the role of this population in HIV elite con-
trollers. They may be directly responsible for ongoing active sup-
pression of the virus, or they could be footprints of immune re-
sponses to epitopes that have escaped or were completely
suppressed. We measured the breadth, specificity, and functional
characteristics of expandable memory cells in elite controllers and
chronic progressors (CP). We also investigated whether there was
a relationship between the breadth of the expandable responses
and viral load. Our data demonstrate that expandable responses in
HIV controllers are directed predominantly against the HIV Gag
protein and show a link between the abundance of expandable
responses to epitope variants and durable virus suppression. Im-
portantly, we show an inverse relationship between the breadth of
Gag-specific expandable responses and the level of plasma
viremia. These data shed light on immune responses that are most
associated with sustained viral control and therefore desirable to
induce through HIV vaccination.

MATERIALS AND METHODS
Study subjects. HIV-infected individuals were recruited from outpatient
clinics at Massachusetts General Hospital and affiliated Boston-area hos-
pitals. The respective institutional review boards approved this study, and
all subjects gave written informed consent. A total of 16 EC, 2 viremic
controllers (VC), 13 untreated CP, and 15 treated CP were studied. De-
tailed definitions of controllers and chronic progressors were described
previously (29). In brief, EC were defined as having plasma HIV RNA
levels of �50 copies/ml in the absence of antiretroviral therapy, on at least
three determinations over at least a year of follow-up. VC had detectable
HIV-1 RNA levels of �2,000 copies/ml. CP were defined as subjects hav-
ing untreated HIV infection for �1 year with plasma viral loads of �2,000
copies/ml for at least 1 year of follow-up; treated (antiretroviral therapy
[ART]) chronic progressors had HIV RNA levels below the limit of detection
for the respective available standard assays (e.g., �75 RNA copies/ml by
branched DNA assay or �50 copies by PCR). All subjects selected for this
study had absolute CD4� T cell counts of �400 cells/mm3. All experiments
were performed on cryopreserved peripheral blood mononuclear cells (PB-
MCs).

IFN-� ELISPOT assays. Gamma interferon (IFN-�) enzyme-linked
immunospot (ELISPOT) assays were performed as described previously
(28), using a final concentration of 100 ng/ml (20 ng of the peptide mix in
a 200-�l volume) of overlapping peptides (OLPs) and incubation over-
night. We used OLPs corresponding to the HIV clade B sequence from
2001 (17). OLPs averaged 18 amino acids in length, overlapped by 10
amino acids, and spanned the entire HIV Gag, Nef, and Env proteins. The

number of input cells ranged from 50,000 to 100,000 cells per well, de-
pending on cell availability. The number of specific spot-forming cells
(SFC) was calculated by subtracting the number of spots in the negative-
control wells from the number of spots in each experimental well. A pos-
itive response was defined as a well having at least three times the mean
number of SFC in the three negative-control wells. Wells with positive
responses also had to have at least 50 SFC/106 PBMCs (28). The magni-
tude of the epitope-specific response was reported as the number of SFC
per million PBMCs.

Cultured IFN-� ELISPOT assays. Peptide-stimulated cells were cul-
tured at 37°C with 5% CO2 for 12 days in RPMI medium containing 10%
heat-inactivated fetal calf serum (R10 medium) and in R10 medium sup-
plemented with 50 U/ml of recombinant human interleukin-2 (IL-2)
(R10/50 medium). A 100-ng/ml final peptide concentration was used for
cultured stimulation because it was determined to be the optimal concen-
tration at which pooled overlapping HIV peptides stimulated the greatest
number of responses (28). Cultures were supplemented with fresh R10/50
medium at 3-day intervals or as needed. On day 12, cells were washed
three times with fresh R10 medium and rested at 37°C with 5% CO2

overnight in fresh R10 medium. The cells were then retested against OLPs
spanning HIV Gag, Nef, and Env proteins in an overnight ELISPOT assay,
as described above.

Flow cytometry. After 12 days of culture stimulation, cells were rested
overnight in R10 medium and then restimulated with Gag OLPs at a
20-ng/ml final concentration or optimal peptides for 1 h at 37°C with 5%
CO2. After 1 h, 10 ng/ml of brefeldin A (Sigma-Aldrich, St. Louis MO,
USA) was added, and the cells were incubated for another 5 h. At the end
of the stimulation period, intracellular cytokine staining (ICS) was per-
formed according to the BD Biosciences ICS protocol. Briefly, cells were
first stained with dead cell dye for 10 min and then washed and surface
stained with anti-CD3, -CD4, and -CD8 and exclusion channel antibodies
(CD14, CD19, and CD56). The cells were then fixed and permeabilized
with Cytofix/Cytoperm solution and stained with anti-IFN-� antibody
(BD Biosciences, San Jose, CA, USA). Following staining, the cells were
resuspended in phosphate-buffered saline (PBS) containing 2% parafor-
maldehyde. The cells were acquired on a BD LSRFortessa cytometer (BD
Biosciences, San Jose, CA, USA). Flow cytometry data were analyzed with
the FlowJo software package (Treestar, Ashland, OR).

Virus inhibition assay. The ability of CD8� T cells to inhibit virus
replication in autologous primary CD4� T cells was assessed by measur-
ing p24 antigen production, as described previously, with modifications
(16). Briefly, primary CD4� and CD8� T cells were isolated by using CD4
MicroBeads and CD8 MicroBeads, respectively (Miltenyi Biotech, San
Diego, CA, USA). Enriched CD8� T cells were cultured for 9 days with
Gag, Nef, or Env OLP pools. IFN-� ICS was used to assess the frequency of
expandable cells specific for each of the three HIV genes. CD4� T cell
targets were prepared by stimulating the magnetic bead-enriched CD4� T
cells with a CD3/CD8-bispecific antibody and infecting the cells on day 3
with the NL4-3 laboratory-adapted HIV strain at a multiplicity of infec-
tion (MOI) of 0.001 for 4 h at 37°C (30). The virus-infected CD4� T cells
were then incubated in the presence or absence of expanded CD8� T cells
at an adjusted effector-to-target-cell ratio of 1:1. The number of input
CD8� T cells for each cell culture was adjusted based on the frequency of
IFN-�-secreting cells, such that equivalent numbers of HIV-specific
CD8� T cells were added to each culture. The cultures were fed at regular
intervals by removing and replacing one half of the culture supernatant
with fresh medium. Supernatants harvested at days 3, 5, and 7 were cryo-
preserved for later p24 antigen quantification by an enzyme-linked im-
munosorbent assay (ELISA) (PerkinElmer, Boston, MA). Log inhibition
values were calculated by subtracting log10 p24 values for cultures with
CD8� T cells from log10 p24 values for cultures without CD8� T cells at
day 7.

Determination of HIV-1 RNA levels by single-copy assays. To accu-
rately quantify low-level viremia in elite controllers and in patients receiv-
ing antiretroviral therapy, we used a highly sensitive quantitative real-time
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reverse transcriptase (RT)-initiated PCR (RT-PCR) assay that detects and
quantifies HIV-1 RNA levels down to 1 copy/ml. The assay was performed
as described previously (31). Briefly, the assay was performed in three
steps: RNA extraction, reverse transcription, and quantitative real-time
PCR. A key internal control aimed at monitoring the recovery of HIV-1
from plasma samples involved the spiking of plasma samples with a
known transcript copy of RNA isolated from an avian sarcoma leukosis
retroviral vector (RCAS). Seven milliliters of plasma from each subject
was mixed with 200 �l of the RCAS stock (300,000 copies of RNA) before
RNA extraction and quantification by RT-PCR. PCR amplification of the
HIV Gag region was performed on either plasma or PBMC samples from
each subject, as previously described (31).

Real-time PCR plate setup. For each real-time PCR run, two standard
curves were generated, one for HIV and the other for RCAS. To generate
the standard curves, a prequantified HIV RNA stock serially diluted to
between 1 million copies and 0.3 copies/10 ml was used. Similarly,
RCAS standards were generated in duplicate by using a serially diluted
RCAS RNA stock. To ensure that there was no contamination of the
PCR reagents, a template control was tested in duplicate for both
RCAS and HIV primers/probes with no plasma samples added (31).
For each specimen, three replicate reactions were performed for HIV
quantification. The number of copies of HIV was derived from the
calculated number of copy equivalents per reaction mixture and was
expressed as the number of copies per milliliter of the starting plasma
sample.

Assay reproducibility and limit of quantitation. The assay was vali-
dated by running 6 independent real-time PCRs in duplicate, using pre-
viously determined HIV-1 RNA amounts ranging from 100,000 to 0.4
copies per reaction mixture. Linear regression analyses revealed that the
assay was sensitive enough to detect as little as a single copy of HIV-1 RNA
in the linear dynamic range of between 0.4 copies and 100,000 HIV RNA
copies per reaction mixture (R2 � 0.94). The assay also showed excellent
agreement between the expected values and the measured values for 6
independent serial dilutions (run in duplicate) of the control HIV RNA
transcript (R2 � 0.96).

Statistical analyses. Spearman rank correlation simple linear regres-
sion and Mann-Whitney tests were performed by using GraphPad Prism
version 5.0b. All tests were two tailed, and P values of �0.05 were consid-
ered significant.

RESULTS

We studied 46 subjects chronically infected with HIV, including
16 HIV EC, 2 VC, 13 CP, and 15 individuals treated with ART.
Table 1 provides information on age, sex, absolute CD4 cell
counts, and virus loads at the time when samples were tested for
HIV-specific immune responses. Table 2 shows HLA class I alleles
of the study participants and indicates the experiments performed
on samples from each subject.

Expandable memory CD8� T cells from elite controllers
preferentially target Gag rather than Env and Nef. Given that EC
maintain prolonged control of HIV viremia, it is important to
understand the immune responses that are associated with this
equilibrium. To determine the potential contribution of expand-
able responses to various epitopic regions in chronically infected
individuals, we examined HIV protein targeting and the breadth
of the expandable responses. Our analysis focused on memory
responses to three HIV proteins: Gag, Nef, and Env. We chose
these three HIV proteins for the following reasons: (i) T cell re-
sponses directed to the HIV Gag protein have consistently been
associated with lower-level viremia (17, 32–35); (ii) Nef responses
are immunodominant early during acute HIV infection and may
be involved in the initial control of viremia, and therefore, their
persistence may be relevant to long-term viral control (36–39);

and (iii) responses targeting the Env region have been shown to be
important for both T cell and B cell immune responses (40–42),
and the breadth of Env-specific responses has been positively as-
sociated with viral load (17, 43). Thus, elucidating the role of
long-lived responses to these HIV proteins may be relevant for
vaccines.

We first carried out a comparative analysis of expandable
responses in three subject groups using cultured ELISPOTs.
Overlapping peptides (OLPs) were used to screen for HIV-
specific T cell responses. The peptides spanned HIV Gag, Nef,
and Env proteins and were based on the consensus clade B
sequence. The peptides were 15 to 20 amino acids in length,
overlapping by 10 amino acids. PBMCs were initially cultured
for 12 days in the presence of OLPs. An IFN-� ELISPOT assay
was then performed on the cultured cells. To investigate
whether there were quantitative differences in the frequencies
of expandable responses directed against the three HIV pro-
teins, we compared the breadths of Gag, Nef, and Env re-
sponses in cultures. Breadth of response in this study is defined
as the sum of IFN-�-positive OLP responses for the entire HIV
protein. Although the breadths of ex vivo Gag responses deter-
mined by IFN-� ELISPOT assays were comparable between
HIV controllers and progressors (P � 0.28, as determined by a
Kruskal-Wallis test) (Fig. 1A), upon peptide stimulation, con-
trollers showed a greater breadth of Gag responses than did
untreated progressors (P � 0.01) as well as treated progressors
(P � 0.0003) (Fig. 1B). Furthermore, stimulated expansion of
controller PBMCs with Gag peptides resulted in a significantly
larger number of responses that were not detectable before
expansion (new responses) than those of untreated progressors
(P � 0.03, as determined by a Kruskal-Wallis test) (Fig. 1C).
The breadths of ex vivo Nef responses were indistinguishable
among the groups (P � 0.1, as determined by a Kruskal-Wallis
test) (Fig. 1D), and the responses expanded poorly upon cul-

TABLE 1 Baseline characteristics of study participants

Patient characteristica

Value for group (n � 46)

Controllers
(EC, n � 16;
VC, n � 2)

Progressors
(CP, n � 13)

Treated subjects
(ART, n � 15)

No. (%) of patients of
gender

Male 16 (88.9) 12 (92.3) 12 (80)
Female 4 (11.1) 1 (7.7) 3 (20)

Age (yr)
Median 56 50 50.5
Q1–Q3 46–73 38–64 38–64

No. of CD4� T
cells/mm3

Median 733 559 508.5
Q1–Q3 486–1,786 436–1,320 443.3–1,028

Log10 HIV copies/ml
determined by a
standard assay

Median 1.7 3.8 1.7
Q1–Q3 1.7–2.4 3.6–4.6 1.7–3.5

a Q1–Q3 denotes interquartile ranges for the parameters indicated.
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ture stimulation in all groups (P � 0.9 for Nef, as determined
by a Kruskal-Wallis test) (Fig. 1E). Similarly, ex vivo Env re-
sponses (Fig. 1G) and expanded Env responses (Fig. 1H) were
indistinguishable among the groups (P � 0.07 for ex vivo Env,
as determined by a Kruskal-Wallis test; P � 0.6 for expanded

Env, as determined by a Kruskal-Wallis test). The breadth of
expanded responses that were not detectable ex vivo (new re-
sponses) was small for both Nef and Env stimulations (Fig. 1F
and I) for all groups. Together, these data demonstrate that
the majority of the HIV-specific expandable memory pool

TABLE 2 Study participants, class I HLA alleles, and experimentsa

Subject

HLA class I allele Subject used for exptb

HLA-A1 HLA-A2 HLA-B1 HLA-B2 HLA-C1 HLA-C2
Cultured
ELISPOT SCA VIA

TW10, T3N, G9D
responses

Elite controllers
586181 0201 0302 0801 5701 0602 0701 ✓

108896 0201 2402 0801 4001 0304 0304 ✓ ✓

835698 0201 3001 1302 5701 0602 0602 ✓ ✓ ✓ ✓

255675 0201 0201 2705 5701 0102 0602 ✓ ✓ ✓ ✓

540772 0101 6801 5501 5701 0303 0602 ✓ ✓ ✓ ✓

731849 0101 7400 3701 8100 0602 1800 ✓ ✓

701554 1101 3201 3501 5001 0401 0602 ✓ ✓

194133 0201 3004 3901 4101 1203 1700 ✓ ✓

382086 3001 3201 1302 4001 0304 0602 ✓ ✓ ✓

849151 0101 2601 2705 5701 0202 0602 ✓ ✓ ✓

473516 0101 3402 0801 5701 0701 0602 ✓ ✓ ✓

595424 0201 1101 1402 5101 0802 1402 ✓ ✓

555477 0301 2601 1401 5701 0602 0802 ✓ ✓ ✓ ✓

275432 0103 3201 3508 7301 0401 1505 ✓ ✓

553064 0201 0301 1501 2705 0102 0304 ✓ ✓

847733 0201 2301 4403 5106 1601 1601 ✓ ✓

164007 0101 0301 5701 4102 0602 1202 ✓ ✓

831969 0301 2601 4501 5701 0602 0602 ✓ ✓

Chronic progressors
387879 2902 3002 0702 3501 0401 1505 ✓

950005 0101 3101 4001 5801 0302 0304 ✓

690641 0201 3303 1302 2705 0401 0202 ✓

185075 0101 0201 4402 5701 0102 0602 ✓ ✓ ✓

805181 0201 0201 0702 4403 0401 0702 ✓

667335 0201 2902 4403 4403 1601 1601 ✓

156261 0101 0206 1501 5701 0304 0602 ✓ ✓

703459 2902 2902 4403 4501 0602 1601 ✓

743887 0201 0301 1801 3501 0401 0701 ✓ ✓

930133 0101 2402 1302 5701 0602 0602 ✓ ✓ ✓

705357 3301 3601 1402 5301 0401 0802 ✓ ✓

930024 0101 6801 0801 5701 0602 0701 ✓

388555 0101 3201 4402 5701 0501 0602 ✓

ARV treated
930213 0201 0201 4001 4001 0304 0501 ✓ ✓

453230 0301 3601 3502 5703 0401 0701 ✓ ✓

508473 0217 2902 4403 5101 1502 1601 ✓ ✓

540319 0101 6801 1517 2705 0102 0702 ✓ ✓ ✓

289151 0101 0201 2705 5101 0102 1502 ✓ ✓

985170 3001 3303 4201 4201 1700 1700 ✓ ✓

516917 0101 0101 0801 1501 0401 0701 ✓ ✓ ✓

672068 0301 1101 4001 4402 0304 0501 ✓ ✓

409231 0101 0201 0801 5101 0701 1502 ✓ ✓ ✓

672068 0301 0110 4001 4402 0304 0501 ✓ ✓

608520 3101 7400 3501 5701 0602 1601 ✓ ✓ ✓

350103 0201 0301 1501 5701 0401 0602 ✓ ✓ ✓

898049 0201 0301 4102 5701 0602 1700 ✓ ✓ ✓

922403 0101 0301 0702 5701 0602 0702 ✓ ✓ ✓

403998 0101 0201 4402 5701 0602 1203 ✓ ✓ ✓
a Shown is a list of all subjects studied, including class I HLA information and the all the experiments performed. SCA, single copy PCR assay; VIA, virus inhibition assay.
b ✓ indicates that the subject was used for the indicated experiment.
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maintained by HIV controllers is directed predominantly
against Gag.

Expandable responses of HIV controllers to Gag retain a su-
perior virus-inhibitory capacity compared to those for Env and
Nef. Previous studies have shown that qualitative features of host
CD8� T cell responses are more strongly associated with immune-

mediated control of HIV replication than quantitative parameters
(10, 44–47). We therefore compared the virus inhibition capaci-
ties of memory CD8� T cells directed against the three HIV pro-
teins. We chose to examine this function because we had previ-
ously shown that Gag-specific central memory cells preferentially
retain the capacity to inhibit virus replication upon stimulated
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FIG 1 Expandable memory responses in elite controllers are directed predominantly toward the HIV Gag protein. (A and B) Gag-specific responses of
controllers and treated and untreated progressors measured ex vivo (A) and in cultures (B). (C) Gag-specific responses, undetectable at baseline, become
detectable following stimulation of cultures. (D and E) Nef-specific responses in controllers and treated and untreated progressors measured ex vivo (D) and in
cultures (E). (F) Nef-specific responses are undetectable at baseline but become detectable following stimulation of cultures. (G and H) Env-specific responses
in controllers and treated and untreated progressors measured ex vivo (G) and in cultures (H). (I) Env responses are low at baseline but increase following
stimulation of cultures. For all panels, horizontal bars denote mean values. P values were calculated by using the two-tailed Mann-Whitney test and the
Kruskal-Wallis one-way analysis of variance.
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expansion with overlapping Gag peptides (28). We directly com-
pared the inhibitory capacities of Gag-, Nef-, and Env-specific
expanded CD8� T cells by measuring their ability to inhibit HIV
replication in autologous CD4 T cells infected in vitro. We selected
donors with no detectable inhibitory activity before culture (data
not shown). Representative data for one elite controller (Fig. 2A)
show that CD8� T cells that expanded following HIV Gag, Nef,
and Env stimulations resulted in a reduction in p24 antigen pro-
duction over a 7-day culture period, with the most effective sup-
pression being shown by Gag-specific CD8� T cells. We next com-
pared the inhibitory capacities of expandable responses in 6 elite
controllers and 3 treated and 3 untreated chronic progressors.
Subjects with at least five expandable responses to Gag, Nef, and
Env were selected for these studies. On a per-cell basis, Gag re-
sponses of HIV controllers had a significantly greater inhibition
capacity than did those of progressors (P � 0.009) (Fig. 2B),
whereas no significant differences were observed for Nef re-
sponses (P � 0.1) (Fig. 2C) or Env responses (P � 0.2) (Fig. 2D)
among groups. The expansion data and the virus inhibition data
collectively suggest that HIV controllers have a greater capacity to
maintain a larger breadth of functionally superior expandable re-
sponses directed against HIV Gag.

Correlation between the breadth of HIV-specific memory
CD8� T cell responses and HIV plasma viral load. In order to
ascertain the in vivo relevance of expandable memory responses,
we next set out to examine the relationship between the breadth of
this cell population and viral load, which is a well-defined prog-
nostic marker of HIV disease progression and has been associated
with CD4� T cell loss in elite controllers (48–50). We used an
internally controlled real-time reverse transcriptase PCR assay
that quantifies the HIV RNA concentration down to 1 copy per ml
of plasma to accurately quantify viral loads in elite controllers and
in progressors whose plasma HIV RNA levels are suppressed to
below 75 copies/ml. We first used the single-copy assay to measure
HIV RNA levels in plasma samples obtained from elite controllers
and ART-suppressed HIV-infected patients. Our analysis revealed
comparable viral load levels between elite controllers and ART-
suppressed subjects (P � 0.11, as determined by a Mann-Whitney
test) (Fig. 3A). Two treated progressors had 100 copies/ml of HIV
RNA as determined by the single-copy assay, even though they
had levels that were below the limit of detection according to
standard viral load measurements, highlighting the greater sensi-
tivity of this assay. We next investigated if residual viremia influ-
ences HIV disease progression. Here, residual viremia refers to
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FIG 2 Virus inhibition of NL4-3-infected autologous CD4� T cells by memory responses. (A) NL4-3-infected CD4� T cells were cultured at an adjusted ratio
of 1:1 with unstimulated PBMCs or PBMCs stimulated with HIV Gag, Nef, or Env peptide pools. (The adjusted ratio is described in Materials and Methods.)
Control conditions included infected CD4� T cells alone (positive control) and uninfected CD4� T cells (negative control). Log10 differences in p24 values
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at day 7.
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low-level viremia that can be detected by the ultrasensitive single-
copy viral load assay but not standard viral load assays. Interest-
ingly, the residual plasma viral load in controllers was inversely
correlated with the breadth of new (absent before expansion) Gag
memory responses (Spearmen’s r � �0.6; P � 0.009) (Fig. 3C),
whereas ex vivo responses (Spearman’s r � �0.02; P � 0.9) (Fig.
3B) and total expanded responses (data not shown) did not. Nei-

ther ex vivo nor expanded (new) Nef responses (Spearman’s
r � 0.4 and P � 0.2 for ex vivo responses; Spearman’s r � 0.3 and
P � 0.3 for expanded responses) correlated with viral load (Fig.
3D and E). Similarly, Env responses (Spearman’s r � �0.1 and
P � 0.7 for ex vivo responses; Spearman’s r � �0.07 and P � 0.8
for expanded responses) did not correlate with residual viral load
(Fig. 3F and G). These data show an association between the
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FIG 3 The breadth of Gag-specific memory responses is inversely correlated with residual plasma viral load in HIV elite controllers. (A) Plasma viral RNA copy
numbers measured by a single-copy PCR assay for elite controllers and ART-suppressed chronic progressors whose HIV RNA levels were below the limit of
detection by a standard viral load (VL) assay. (B and C) Elite controller plasma viral loads measured by a single-copy assay, plotted against the breadth of ex vivo
Gag-specific responses (B) or expandable, previously undetectable (new) Gag-specific responses (C). (D and E) Elite controller plasma viral loads measured by
a single-copy assay, plotted against the breadth of ex vivo Nef-specific responses (D) or new Nef-specific responses in cultures (E). (F and G) Elite controller
plasma viral loads measured by a single-copy assay, plotted against the breadth of ex vivo Env-specific responses (F) or (new) Env-specific responses in cultures
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breadth of new Gag-specific (previously undetectable) responses
and viral load. We next carried out similar analyses for ART-sup-
pressed subjects, but we were unable to detect significant correla-
tions for either ex vivo responses (Spearman’s r � �0.1; P � 0.7)
(Fig. 3H) or expanded (new) Env responses (Spearman’s r � 0.1;
P � 0.7) (Fig. 3I). Collectively, our data demonstrate a strong
association between a larger breadth of the Gag-specific memory
pool and effective viral suppression in the absence of antiretroviral
therapy. These data also support a model in which very-low-fre-
quency but highly expandable HIV-specific memory cells may be
directly involved in sustained viral suppression in vivo and that
broad Gag-specific memory responses are important for sustained
HIV suppression.

HIV controllers maintain a large pool of epitope variant
(type)-specific expandable memory CD8� T cells directed
against in vivo-occurring viral variants. Previous studies have
demonstrated that accumulation of viral escape mutants contrib-
utes to higher viral loads during chronic AIDS virus infection
(51–55). In addition, the ability to mount de novo CD8� T cell
responses with sufficient cross-reactivity to potential escape vari-
ants may be one mechanism by which elite controllers maintain
lower viral loads despite ongoing viral evolution (47, 56). We hy-
pothesized that maintenance of a greater breadth of memory re-
sponses against escape variants might also contribute to sustained
suppression of HIV. We addressed this issue by determining
whether EC maintain immune responses to a wide range of
epitope variants known to arise in vivo. To simplify the analysis,
we focused on a well-characterized protective Gag240 –249 TW10
epitope and two of its in vivo variants (57). We chose the TW10
epitope because the T242N (T3N) mutation in this epitope is the
most frequently detected mutation, which occurs rapidly after
acute infection in HLA-B*57/B*58-positive persons (58). The
T3N mutation is also associated with viral replicative fitness cost,
and the arising variants can be targeted by specific immune re-
sponses (26, 59).

We performed cultured expansions of HIV-specific CD8� T
cells using the wild-type (WT) TW10 epitope as well as the T3N
and G248D (G9D) variant epitopes. The no-peptide-stimulation
culture served as the negative control. Sixteen HLA-B*5701 do-
nors, comprised of 6 elite controllers, 5 chronic progressors, and 5
treated progressors, were used for these studies (Table 2). To de-
termine the specificity of the expanded memory CD8� T cells, we
tested the reactivity of each expanded population against the
peptide used to generate the cell line as well as against the other
two TW10 variant peptides. Culture stimulation of PBMCs from
one elite controller (known to have the G9D mutation in plasma
viruses) in the presence of TW10 peptide variants resulted in a
significant expansion of the G9D-, WT-, and T3N-specific cells
populations (Fig. 4A). In contrast, a chronically infected un-
treated B*5701 donor with the T3N mutation in plasma viruses
expanded only T3N-reactive cells (Fig. 4B). Interestingly, each
expanded memory cell population was more strongly reactive to
the peptide used for its expansion (Fig. 4A and B). Figure 4C to E
show summary data for all 16 donors studied. Figure 4C shows
data for 6 elite controllers. PBMCs were expanded with the TW10
(Fig. 4C, left), T3N (middle), and G9D (right) epitopes and tested
for reactivity to the three variant peptides. The data show that elite
controllers maintained significantly higher frequencies of mem-
ory CD8� T cells with the wild-type TW10 and G9D variant
epitopes. Figure 4D shows data from a similar analysis for un-

treated chronic progressors. The data reveal that memory re-
sponses of chronic progressors were narrowly directed to T3N
(Fig. 4D, middle). Figure 4E shows that ART-suppressed subjects
also maintained only T3N memory responses. Overall, these data
show that elite controllers maintain larger pools of expandable
memory responses to epitope variants, at least in the context of
HLA-B*5701, than do chronic progressors.

DISCUSSION

This study confirms and extends data from a previous study show-
ing that maintenance of a greater breadth of central memory T cell
(Tcm) responses targeting the HIV Gag protein is associated with
durable immune-mediated control in the setting of natural HIV
infection. These data support the hypothesis that non-Gag-spe-
cific CD8� T cell responses, particularly Nef- and Env-specific
responses, contribute less to durable HIV suppression. Although
the importance of Gag-specific CD8� T cell responses for the elite
control of HIV has been demonstrated in many studies, we now
demonstrate that Gag-specific new (absent before expansion)
memory responses are associated with sustained control of plasma
HIV viremia. More importantly, the observed effect of expandable
responses on residual viremia strongly suggests that immune con-
trol in chronic HIV infection is an active and ongoing process.

In this study, we further elucidated the superiority of Gag re-
sponses by showing that under conditions of very low antigen
loads, HIV controllers preserve larger breadths of Gag responses
to viral variants. We also show that on a per-cell basis, the expand-
able Gag responses retain superior antiviral qualities compared to
the Nef and Env responses, even within individual subjects. Fur-
thermore, the breadth of Gag memory responses was associated
with lower residual viral loads, whereas no association was ob-
served for either Nef or Env responses. We also showed that the
superiority of Gag memory responses in terms of virus-inhibitory
capacity is lost during progressive HIV infection, and complete
suppression of viral replication with combination ART did not
restore this. More importantly, in ART-treated individuals, the
breadth of memory responses (including Gag responses) did not
correlate with viral load, although there was a trend toward a
negative association. Even though cross-sectional analyses cannot
unequivocally provide a direct proof of causality, these data
strongly suggest that low-frequency but readily expandable mem-
ory responses play an active role in sustained suppression of HIV.
These data also indicate that there are qualitative differences in
memory responses in controllers compared to those in progres-
sors in terms of antiviral function, and a lack of effective expand-
able memory responses in progressors might allow rapid viral re-
bound upon cessation of antiviral therapy.

Other features associated with the superiority of Gag responses
in HIV controllers are the capacity to cross-recognize viral vari-
ants and the ability to induce de novo responses to mutant viruses
(9, 47, 56). Both HIV and SIV infections exhibit selection of escape
variants during both primary and chronic infections. It has also
been shown that the selection of viral escape variants during
chronic SIV and HIV infections can result in a loss of immune
control and disease progression (53, 60–62). Thus, the ability of
HIV to escape from virus-specific CD8� T cell responses has been
proposed to be an important obstacle for the maintenance of pro-
tective immune responses, and likewise, the viral diversity result-
ing from CD8� T cell-driven viral evolution represents a major
hurdle for HIV vaccine design (63). Interestingly, elite controllers
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FIG 4 Elite controllers maintain a large pool of expandable memory responses specific for the TW10 epitope and its in vivo-occurring variants. PBMCs from HLA-B*57
donors were stimulated with either wild-type TW10 or variant peptides. Each expanded population was then tested for reactivity to other variants by using IFN-� ICS.
(A) Representative flow cytometry plot for one elite controller. Numbers in the gates represent the proportions of IFN-�-secreting CD8� T cells. (B) Representative flow
cytometry plot for a chronic progressor. (C to E) Summary data for 6 controllers (C), 5 progressors (D), and 5 ART-suppressed subjects (E). Data show how each
population expands when a specific epitope cross-reacts with variant epitopes. ns, not significant.
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appear to be able to control the virus despite ongoing evolution
and the development of escape mutations in key CD8� T cell
epitopes. Two main mechanisms of control of virus replication by
CD8� T cells in the face of viral variation include the generation of
a repertoire of effective T cell clonotypes and the ability to recog-
nize individual viral epitope variants (47, 57). In this study, rec-
ognition of variant epitopes was measured by an IFN-� ICS assay,
which was shown in a previous SIV study to not necessarily cor-
relate with the ability to suppress escape mutants (64). However,
consistent with our findings, a recent study used CD4� T cells
infected with mutant viruses as target cells in virus inhibition as-
says and also showed that CD8� T cells of elite controllers can
suppress mutant viruses (65). Our data suggest that the capacity to
maintain highly functional expandable memory responses with
antiviral activity against viral variants is one possible mechanism
contributing to durable virus suppression in HIV controllers.

The precise mechanisms that render Gag responses more effec-
tive in controlling HIV are unclear. Some proposed mechanisms
include a rapid expression of epitopes derived from the Gag pro-
tein contained in the infecting viral particles and structural con-
straints of the Gag protein that impede CD8� T cell escape (66–
70). However, these suggestions are inconsistent with the fact that
beneficial effects of Gag-specific responses are not universal
among elite controllers, and indeed, most progressors also mount
detectable responses against Gag (71, 72). This discrepancy can
partly be explained by our recent data showing that only a subset
of Gag responses, particularly those restricted by protective alleles,
exhibits superior antiviral function (10).

It is important to note that although we show strong evidence
for the role of expandable memory responses in durable virus
suppression, other cell subsets may play equally important roles in
different stages of HIV infection. Indeed, several studies have
shown that a wide range of phenotypically distinct memory sub-
sets possess virus-inhibitory potential. In these in vitro studies,
effector populations demonstrate an inhibitory capacity in short-
term stimulations, whereas long-term stimulation results in in-
creased inhibitory activity by central memory cells (73, 74). Effec-
tor memory T cells (Tem) and Tcm play complementary roles in
the immune-mediated suppression of HIV replication. Tem are
much more effective at controlling new infections because they
are endowed with more immediate effector functions and can
populate lymphoid and extralymphoid sites, which are the initial
sites of HIV exposure (75). A case in point is a recent study in
which a Tem-based vaccine blocked the establishment of chronic
infection following challenge with a highly pathogenic SIV strain
(76–78). However, Tem have a limited proliferative capacity, are
dependent on persistent antigens, and therefore may be less effec-
tive at controlling a fully established systemic infection. On the
other hand, central memory cells are much more effective at sup-
pressing systemic infections because they provide a readily ex-
pandable reserve force of HIV-specific CD8� T cells with diverse
specificities. Additionally, because central memory cells have a
high proliferative potential, a relatively small population of patho-
gen-specific central memory cells can quickly mount greater an-
amnestic effector responses than those of Tem.

Several limitations of this study should be noted. First, this
work focused on three HIV proteins, Gag, Nef, and Env. While we
believe that the approach used provides a robust assessment of
relevant expandable memory populations, we did not assess the
potential roles of this population in responses against other HIV

proteins. Second, the use of consensus peptides for our screening
assays may have reduced our ability to detect some memory re-
sponses directed against autologous viruses. However, this should
have affected the different cohorts equally, and yet we saw signif-
icant differences only in comparisons of the Gag-specific re-
sponses of EC to those of the other groups. Despite these limita-
tions, our data suggest that in-depth interrogation of this
previously underappreciated cell population can lead to a clearer
understanding of the role that CD8� T cell responses play during
successful containment of HIV replication.

In conclusion, our data support a superior role for Gag-specific
CD8� T cell responses in immune-mediated control of HIV in-
fection compared to those directed at Env and Nef. Furthermore,
our data reinforce the concept that not all CD8� T cell responses
are equally beneficial. Together with data from previous reports,
the results here link expandable memory responses to sustained
virus suppression in the elite control of HIV. The demonstration
of a negative correlation between expandable Gag-specific mem-
ory T cell responses and residual viremia strongly suggests that
this cell population is not a mere footprint of escaped viruses but
rather actively contributes to the sustained suppression of virus
replication. Importantly, these data also show that HIV control-
lers possess a greater ability to mount responses to mutant viruses.
Finally, the presence among elite controllers of large proportions
of Gag-specific memory cells that are more reactive to epitope
variants suggests that their induction by future HIV vaccines may
be important for narrowing possible routes of rapid escape from
vaccine-induced CD8� T cell responses.
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